Video Services Forum (VSF)
Technical Recommendation TR-08
Transport of JPEG XS Video in ST 2110-22

April 20, 2022
VSF TR-08:2022
INTELLECTUAL PROPERTY RIGHTS

RECIPIENTS OF THIS DOCUMENT ARE REQUESTED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT CLAIMS OR OTHER INTELLECTUAL PROPERTY RIGHTS OF WHICH THEY MAY BE AWARE THAT MIGHT BE INFRINGED BY ANY IMPLEMENTATION OF THE RECOMMENDATION SET FORTH IN THIS DOCUMENT, AND TO PROVIDE SUPPORTING DOCUMENTATION.

THIS RECOMMENDATION IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY USE OF THIS RECOMMENDATION SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS RECOMMENDATION.

LIMITATION OF LIABILITY

VSF SHALL NOT BE LIABLE FOR ANY AND ALL DAMAGES, DIRECT OR INDIRECT, ARISING FROM OR RELATING TO ANY USE OF THE CONTENTS CONTAINED HEREIN, INCLUDING WITHOUT LIMITATION ANY AND ALL INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS, LOSS OF PROFITS, LITIGATION, OR THE LIKE), WHETHER BASED UPON BREACH OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE FOREGOING NEGATION OF DAMAGES IS A FUNDAMENTAL ELEMENT OF THE USE OF THE CONTENTS HEREOF, AND THESE CONTENTS WOULD NOT BE PUBLISHED BY VSF WITHOUT SUCH LIMITATIONS.
Executive Summary

This VSF Technical Recommendation (TR), in addition to defining profiles for streaming of JPEG XS video over SMPTE ST 2110-22, adds information for the interoperable transport of audio and ancillary data over other relevant SMPTE ST 2110 standards. The JPEG XS compression method is used in low latency transmission applications for cost-effective, high quality, real-time transport of television video signals over IP networks. The term “XS” is meant to convey the “extra small”, “extra speed” nature of the compression method.

Recipients of this document are invited to submit technical comments. The VSF also requests that recipients notify us of any relevant patent claims or other intellectual property rights of which they may be aware, that might be infringed by any implementation of the Recommendation set forth in this document, and to provide supporting documentation.
Table of Contents

1. Introduction ... 4
 1.1 Contributors ... 4
 1.2 About the Video Services Forum .. 4
2. Conformance Notation ... 5
3. Normative References ... 6
4. Acronyms .. 7
5. Definitions .. 8
6. System Overview/Use Cases (Informative) ... 8
7. Organization and Signaling of a VSF TR-08 Package ... 9
8. Essence Service Components .. 10
 8.1 JPEG XS Video ... 10
 8.2 Audio Transport (PCM and Non-PCM signals) .. 14
 8.3 Ancillary Data ... 15
9. IP Encapsulation, Forward Error Correction, and Receiver Timing ... 16
10. Capability Sets and Interoperability Points ... 17

Appendix A (Informative) Session Description and NMOS Examples .. 19
Appendix B (Informative) Capability Sets and Interoperability Points .. 21
1. **Introduction**

This document describes an encapsulation of JPEG XS codestream(s) into SMPTE ST 2110-22 for transmission over Internet Protocol-based networks. It also addresses potential system interoperability issues with other media components within the ST 2110 system.

In February of 2020, the VSF created the JPEG XS Activity Group. This group was formed to develop an interoperable method for the provision of low-latency JPEG XS coded video for WAN & LAN transport. The group was also charged with defining interoperability points for the compression and transmission of High Definition and Ultra-High Definition formats.

1.1 **Contributors**

Contributors to this document include:
- John Dale, Activity Group Chairman, Media Links, Inc.
- Brad Gilmer, Gilmer & Associates, Inc.
- Andrew Krupiczka, Disney
- Jean-Baptiste Lorent, intoPIX SA
- Tim Bruylants, intoPIX SA
- Danny Pierini, Matrox
- John Mailhot, Imagine Communications
- John Schilberg, Utah Scientific

1.2 **About the Video Services Forum**

The Video Services Forum, Inc. (www.videoservicesforum.org) is an international association dedicated to video transport technologies, interoperability, quality metrics and education. The VSF is composed of service providers, users and manufacturers. The organization’s activities include:

- providing forums to identify issues involving the development, engineering, installation, testing and maintenance of audio and video services;
- exchanging non-proprietary information to promote the development of video transport service technology and to foster resolution of issues common to the video services industry;
- identification of video services applications and educational services utilizing video transport services;
- promoting interoperability and encouraging technical standards for national and international standards bodies.

The VSF is an association incorporated under the Not For Profit Corporation Law of the State of New York. Membership is open to businesses, public sector organizations and individuals worldwide. For more information on the Video Services Forum, contact:

Bob Ruhl
Operations Manager
Video Services Forum +1 929-279-1995
bob.ruhl1@verizon.net.
2. Conformance Notation

Normative text is text that describes elements of the design that are indispensable or that contain the conformance language keywords: "shall", "should", or "may". Informative text is text that is potentially helpful to the user, but not indispensable, and can be removed, changed, or added editorially without affecting interoperability. Informative text does not contain any conformance keywords.

All text in this document is, by default, normative, except: the Introduction, any section explicitly labeled as "Informative", or individual paragraphs that start with "Note:"

The keywords "shall" and "shall not" indicate requirements strictly to be followed in order to conform to the document and from which no deviation is permitted.

The keywords, "should" and "should not" indicate that, among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others; or that a certain course of action is preferred but not necessarily required; or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited.

The keywords "may" and "need not" indicate courses of action permissible within the limits of the document.

The keyword “reserved” indicates a provision that is not defined at this time, shall not be used, and may be defined in the future. The keyword “forbidden” indicates “reserved” and in addition indicates that the provision will never be defined in the future.

A conformant implementation according to this document is one that includes all mandatory provisions ("shall") and, if implemented, all recommended provisions ("should") as described. A conformant implementation need not implement optional provisions ("may") and need not implement them as described.

Unless otherwise specified, the order of precedence of the types of normative information in this document shall be as follows: Normative prose shall be the authoritative definition; Tables shall be next; followed by formal languages; then figures; and then any other language forms.
3. **Normative References**

AMWA BCP-002-01: Natural Grouping of NMOS Resources v1.0.0

AMWA BCP-003-01: Secure Communication in NMOS Systems v1.0.0

AMWA BCP-003-02: Authorization in NMOS Systems v1.0.0

AMWA BCP-003-03: Certificate provisioning in NMOS Systems v1.0.0

AMWA BCP-006-01: NMOS with JPEG XS v1.0.0 (Work In Progress)

AMWA IS-04 NMOS Discovery and Registration Specification (Stable) v1.31

AMWA IS-05 NMOS Device Connection Management Specification (Stable) v1.1.1

ANSI/CTA 861-H:2021 “A DTV Profile for Uncompressed High-Speed Digital Interfaces”

IETF RFC 9134 “RTP Payload Format for ISO/IEC 21122 (JPEG XS)”

IETF RFC 7273 “RTP Clock Source Signaling”

IETF RFC 8866 “SDP: Session Description Protocol”

JT-NM TR-1001_2020v1.1 System Environment and Device Behaviors for ST 2110 Media Nodes in Engineered Networks —Networks, Registration, and Connection Management

Rec. ITU-R BT.2020-2: “Parameter values for ultra-high definition television systems for production and international programme exchange”

Rec. ITU-R BT.2100-2: “Image parameter values for high dynamic range television for use in production and international programme exchange”

SMPTE ST 2022-7:2019: “Seamless Protection Switching of RTP Datagrams”

SMPTE ST 2086:2018 “Mastering Display Color Volume Metadata Supporting High Luminance and Wide Color Gamut Images”

¹ Implementers should note that AMD1 for ISO/IEC 21122-2:2022 will contain fixes along with the High 4:2:0 profile and also defines a 4bpp sublevel.
and Delivery Timing for Uncompressed Active Video”
SMPTE ST 2110-22:2019: “Professional Media over Managed IP Networks: Constant Bit-Rate Compressed Video”
SMPTE ST 2110-31:2018: “Professional Media over Managed IP Networks: AES3 Transparent Transport”
SMPTE ST 2110-40:2018: “Professional Media over Managed IP Networks: SMPTE ST 291-1 Ancillary Data”

Note: Joint ITU and ISO/IEC documents refer to exactly the same standard text, and may share the same title, however in some cases they do not.

4. Acronyms

ACL Audio Conformance Level
AES Audio Engineering Society
ANC Ancillary Data
API Application Programming Interface
Bpp Bits per pixel
ETSI European Telecommunications Standards Institute
FEC Forward Error Correction
FHD Full High Definition
HD High Definition
HDR High Dynamic Range
HLG Hybrid-Log Gamma
IEC International Electrotechnical Commission
IETF Internet Engineering Task Force
IP Internet Protocol
IPMX Internet Protocol Media Experience
ISO International Organization for Standardization
ITU International Telecommunication Union
JPEG Joint Photographic Experts Group
JPEG XS Joint Photographic Experts Group 21122 Coding Standard
LAN Local Area Network
PCM Pulse Code Modulation
PQ Perceptual Quantize
RGB Red Green Blue
RTP Real-Time Protocol
SDP Session Description Protocol
SDR Standard Dynamic Range
SDI Serial Digital Interface
SMPTE Society of Motion Picture and Television Engineers
TR² Video Services Forum Technical Recommendation²
UHD Ultra High Definition
UHD1 Ultra high resolution with a resolution of 3840 × 2160, which is found in ITU-R BT 2020
UHD2 Ultra high resolution with a resolution of 7680 × 4320, which is found in ITU-R BT 2020
VSF Video Services Forum
VS Video Support Super Box
YCbCr Luminance Component, Blue-Difference and Red-Difference Chroma Components
WAN Wide Area Network

5. Definitions

Device “Device” as defined in SMPTE ST 2110-10.
Media Node “Media Node” as defined in JT-NM TR-1001
Receiver “Receiver” as defined in SMPTE ST 2110-10.
Sender “Sender” as defined in SMPTE ST 2110-10.

6. System Overview/Use Cases (Informative)

An end-user or service provider of broadcast transmission services can utilize devices that implement this Technical Recommendation (TR) for the unidirectional transport of real time television signals over an IP network within a facility or between facilities. The signals may include video, audio, and SMPTE 291 formatted Ancillary Data packets.

As shown in figure 1 above, the Sender has video, audio, and Ancillary Data inputs. These inputs are presumed to be time-aligned at their presentation to the Sender. The video is compressed using a JPEG XS compression algorithm. The JPEG XS codestream is converted into a Real-Time Protocol (RTP) stream in accordance with RFC 9134 and meeting the requirements of SMPTE ST 2110-22. Audio signals are converted into SMPTE ST 2110-30 or SMPTE ST 2110-31 streams, and ANC Data is packaged into SMPTE ST 2110-40 streams.

The system defined in this TR supports linear PCM audio using SMPTE ST 2110-30, and non-PCM audio (and non-audio signals represented in AES3 wrappers) using SMPTE ST 2110-31.

The Sender transmits the RTP streams over the network in accordance with SMPTE ST 2110-10,
including optional support of the SMPTE ST 2022-7 redundancy model and separate network paths. The Receiver de-encapsulates the RTP/IP streams, recovering the Audio, ANC Data, and the JPEG XS codestream. The JPEG XS codestream is further decoded to video essence in accordance with provisions of this recommendation. The reconstructed video, audio, and ANC Data signals are time-aligned using the RTP timestamps (correcting for different RTP Clock rates) before presentation.

The target end to end transmission latency, (less network and transit delay, and not including buffering for delay path differential), for the real time transmission of all essence components including audio and ancillary data is approximately one tenth of a video frame.

This TR specifies the syntax and semantics of the signals between the Sender and the Receiver, and in doing so, places constraints on the behavior of the Sender. It also specifies some minimum requirements for the Receiver. These constraints and requirements are needed for interoperability.

Receivers under this TR-08 must make the relevant video signal metadata (colorimetry, transfer characteristic, frame rate, sampling structure, image dimensions, etc) available to downstream devices using the technical standards appropriate to the internal or external interfaces provided.

A number of different “Capability Sets”, each with several “Conformance Levels”, are specified in section 10 of this recommendation. These capability sets include interoperation of Senders and Receivers within a facility under a common clock domain, and also interoperation of Senders and Receivers in different facilities, perhaps separated by some distance, and operating on potentially different clock domains.

7. Organization and Signaling of a VSF TR-08 Package

Streams compliant with this Technical Recommendation shall be organized into a “TR-08 Package” consisting of one SMPTE ST 2110-22 video stream(s), zero or more SMPTE ST 2110-30, zero or more ST 2110-31 audio stream(s), and zero or more SMPTE ST 2110-40 ANC Data streams.

Media Nodes should comply with the requirements and behaviors specified in Section 11 of JT-NM TR-1001-1 except where overridden by provisions of this Technical Recommendation.

Media Nodes shall register their Senders and Receivers using the Registration API defined in the AMWA NMOS IS-04 Discovery and Registration Specification.

Receivers shall be capable of connecting to Senders’ streams when directed as per the AMWA NMOS IS-05 Device Connection Management Specification.

Compliant senders and receivers shall implement the recommendations of AMWA BCP-006-01.

Media Nodes shall indicate appropriate grouping of Senders and Receivers as per AMWA BCP-002-01 Natural Grouping Of NMOS Resources Specification. (Example: a video and associated audio stream from a field camera.)

Optionally Media Nodes may implement security on the NMOS APIs. If a media note implements security, the implementation shall comply with AMWA NMOS BCP-003 specifications.
Video signal shall be compressed using a JPEG XS codec that conforms to ISO/IEC 21122-1 as described in Section 8.1 of this TR.

The JPEG XS codestream shall be encapsulated into RTP using the payload format described in RFC 9134.

The RTP Stream shall meet all of the requirements of SMPTE ST 2110-22, and by extension, shall meet all of the requirements of SMPTE ST 2110-10.

Details of the required elements of the IS-05 “transport-tile” (an RFC 4566 SDP object) shall be as described in RFC 9134 and shall meet the requirements of SMPTE ST 2110-10.

PCM Audio signals shall be organized into SMPTE ST 2110-30 streams or SMPTE ST 2110-31 streams, depending on application requirements.

Non-PCM audio signals and any AES3-encapsulated non-audio signals shall be encapsulated into SMPTE ST 2110-31 streams.

Ancillary Data signals shall be encapsulated into SMPTE ST 2110-40 streams.

Each essence component shall be synchronous to the clock source declared in the ts-refclk element of the Sender’s Session Description Protocol (SDP) object in compliance with RFC 7273 RTP Clock Source Signaling.

8. Essence Service Components

This section establishes specific restrictions for JPEG XS video, audio and metadata in order to improve interoperability between Senders and Receivers from different implementers.

8.1 JPEG XS Video

8.1.1 JPEG XS Codestream Restrictions

JPEG XS Codestreams emitted by Senders that are compliant with this TR shall be compliant with ISO/IEC 21122-2 and ISO/IEC 21122-3, with the following parameters, settings and changes:

- **Number of components, chroma sampling format and alpha channel**: If there is an alpha channel, it shall be transported in its own codestream.

Codestream parameters and the JPEG XS Video Information box parameters shall be set according to one of the allowed configurations shown in Table 1. below.

<table>
<thead>
<tr>
<th>Allowed Configurations</th>
<th>Nc value (= number of components)</th>
<th>sx[c] and sy[c] values (= horizontal and vertical sampling factors)</th>
<th>Profile</th>
<th>Ppih</th>
<th>Cpih</th>
<th>SCHAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 color components 4:2:0 YCbCr sampling</td>
<td>Nc = 3</td>
<td>s0[0] = s0[0] = 1, s0[1] = s0[2] = 2</td>
<td>High420.12<sup>3</sup></td>
<td>0x4240</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

³ See Footnote 1 above
Table 1. Number of components and chroma sampling

| Color transformation: | if the three components of the image use the YCbCR digital representation, Cpih shall be set to 0 (no color transformation). |
| Senders shall use the following order of components in the JPEG XS codestream, and the component index shall be set as follows: Y (component index shall be set to 0), Cb (component index shall be set to 1), Cr (component index shall be set to 2). |
| In the case of RGB color components with 4:4:4 sampling, Cpih shall be set to 1. This indicates that the three color components of the image can be reversibly transformed to YCbCr digital representation by JPEG XS. |
| Senders shall use the following order of components in the JPEG XS codestream, and the component index shall be set as follows: R (component index shall be set to 0), G (component index shall be set to 1), B (component index shall be set to 2). |
| Input bit depth: B[c] shall be set to 8, 10, or 12 for all values of c (i.e. all components) based on the Conformance Level and selected Capability Set shown in Table 5 in Section 10. |
| Number of horizontal wavelet transformations: N_{L,x} shall be set to 5 |
| Number of vertical wavelet transformations: N_{L,y} shall be set to 2 |
| Quantizer type: Qpih shall be set to 1 (uniform quantizer) |
| Level: shall be set to either 1k-1, 2k-1, 4k-2, or 8k-2, depending on the targeted capability set based on the Conformance Level and selected Capability Set shown in Table 5 in Section 10. Implementers shall select the lowest level possible given the width, height and frame rate of the image. |

4 It is anticipated that the value of ‘0’ for 4:0:0 will be specified in a future version of ISO/IEC 21122-3.
Note: The selected level defines constraints on the maximum dimensions and framerate of the images in the uncompressed domain, and as such, sets a lower bound on the throughput in the decoded domain.

- **Sublevel**: encoders shall set Sublevel to Sublev3bpp or Sublev4bpp. When the bpp is less than or equal to 3bpp, Sublev3bpp shall be used. When the bpp is above 3bpp up to 4bpp, Sublev4bpp shall be used. Implementations compliant with this TR shall not set Sublevel to any other values.\(^5\)

Compression bit rate shall be constrained to a maximum of 4 bpp (see capability sets defined in Section 10).

Sublev4bpp shall be signaled setting the binary value of Plev field to ‘xxxx xxxx 0000 0110’ (Note: Plev value to be published in ISO/IEC 21122-2 AMD1)

Note: The selected sublevel defines constraints on the maximum number of bits per pixel for an encoded image and as such, sets a lower bound on the throughput in the encoded domain that a conforming decoder implementation supports.

8.1.2 JPEG XS Stream

The JPEG XS Stream shall be mapped into IP packets in accordance with RFC 9134 with the following constraints:

The *packetization mode* (K) bit shall be set to “0” in the RTP Payload Header. This sets the codestream packetization mode to ‘codestream’.

The number of bytes of *Payload Data* in a packet shall be a multiple of 8 bytes except for the last packet of the field or frame. Note: last packets have the ‘M’ bit set to ‘1’ as specified in RFC 9134.

8.1.2.1 Bit rate coding

The value of the *brat* field shall be set to the actual maximum bit rate of the specific transmitted stream (not the theoretical maximum bit rate defined by the sublevel).

8.1.2.2 Field coding and frame rate

Field coding and frame rate shall be set by the *frat* field, whose semantics are defined in ISO/IEC 21122-3.

Senders shall set the *frat* field in the JPEG XS Stream as follows:

For interlaced signals, the Interlace_Mode of the frat field of all JPEG XS picture segments shall be set to ‘1’ (note: indicating that the first picture of a frame is the first video field, and the second

\(^5\) Sublev4bpp will be specified in ISO/IEC 21122-2 AMD1.
picture of a frame is the second video field). For progressive signals, the Interlace_Mode of the frat field shall be set to ‘0’.

The frat field shall always be set to signal the frame rate and shall not indicate an unknown frame rate.

In addition, the frame rate can be signaled as described in RFC 9134 as part of the SDP. If there is conflict between the frame rate indicated in the SDP file and the frame rate signaled in the JPEG XS Video Information box, the values in the JPEG XS Video Information box shall prevail.

Sender implementations compliant with this document shall ensure that the information signaled as described in RFC 9134 shall always match the information contained in the SDP file.

8.1.2.3 RTP Timestamps

The RTP timestamps of the transmitted packets shall comply with ST 2110-10. In interlace mode, each field shall have a unique timestamp.

Note: RFC 9134 Errata 6752 addresses a contradiction between ST 2110-10 and this RFC regarding timestamps.

8.1.2.4 Color Specification & Dynamic Range

Color information shall be specified in the JPEG XS stream using the Color Specification box as defined in ISO/IEC 21122-3 and in RFC 9134. In the Color Specification box, the seven (7) CICP_RESERVED bits of the METHDAT field shall all be set to ‘0’.

Color information shall be signaled in the SDP file as described in RFC 9134. If there is conflict between the information in the SDP file and the JPEG XS stream, or if the SDP indicates a colorimetry value of “UNSPECIFIED”, the values in the JPEG XS stream shall prevail.

Sender implementations compliant with this document shall ensure that the information signaled as described in RFC 9134 shall always match the information contained in the SDP file.

Note: Table 2. below summarizes the signaling code values a sender might employ for commonly used color spaces. This information may be found in ISO/IEC 21122-3 and in Rec. ITU-T H.273, and is provided here for the convenience of implementers.

<table>
<thead>
<tr>
<th>Color space</th>
<th>Color primaries code</th>
<th>Transfer characteristics code</th>
<th>Matrix coefficients code</th>
<th>Video full range flag</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec. ITU-R BT.709-6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>BT 709 SDR</td>
</tr>
<tr>
<td>Rec. ITU-R BT.2020-2</td>
<td>9</td>
<td>14 (10 bit)</td>
<td>9 (non-constant luminance)</td>
<td>0</td>
<td>Wide Color Gamut SDR</td>
</tr>
<tr>
<td>Rec. ITU-R</td>
<td>9</td>
<td>15 (12 bit)</td>
<td>9 (non-constant)</td>
<td>0</td>
<td>Wide Color</td>
</tr>
</tbody>
</table>
Table 2. (Informative) – Selected examples of color space specification

| Mastering Display Metadata | Mastering Display Metadata is defined in SMPTE ST 2108-1 and ST 2108-2. This information may be carried as specified in RFC 9134, in the Mastering Display Metadata box within the JPEG XS Video Support box, or it may be transported in a ST 2110-40 stream.

In the case where the Mastering Display Metadata is present at a decoder in multiple locations, the information in the Mastering Display Metadata box shall take priority.

If a Sender does not have access to the Mastering Display Metadata at the time the stream is generated, then the Mastering Display Metadata box shall not be included in the VS box.

Mastering Display Metadata shall be specified using the following fields:

- X_{c0}, Y_{c0}, X_{c1}, Y_{c1}, X_{c2}, Y_{c2}, X_{wp}, Y_{wp}, L_{max} and L_{min}, as defined in SMPTE ST 2086:2018 “Mastering Display Color Volume Metadata Supporting High Luminance and Wide Color Gamut Images”

- MaxFALL and MaxCLL, as defined in ANSI/CTA 861-H:2021 “A DTV Profile for Uncompressed High-Speed Digital Interfaces”

If the Mastering Display Metadata is unknown or not included in the video input when the stream is generated, the Mastering Display Metadata shall not be included in the VS box.

8.2 Audio Transport (PCM and Non-PCM signals)

Audio signals shall be sampled at a rate of 48 kHz, using a sampling clock which is synchronous to the signaled ts-refclk clock source in the SDP.

PCM Audio signals shall be organized into SMPTE ST 2110-30 streams or SMPTE ST-2110-31 streams or a combination thereof. Any non-PCM audio signals, and/or AES3-formatted non-audio
signals, shall be packaged into SMPTE ST 2110-31 streams.

Senders and Receivers that are compliant with this TR shall support the Audio Conformance Level specified in Section 10 of this document for the specified use case, referring to the requirements enumerated in Table 3 below.

<table>
<thead>
<tr>
<th>Audio Conformance Level</th>
<th>Bit Depth, Sampling, PIDs and AES Channel Pairs per PID</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24 bits, 48 kHz sampling</td>
</tr>
<tr>
<td></td>
<td>Up to four (4) audio streams</td>
</tr>
<tr>
<td></td>
<td>each stream may be SMPTE 2110-30 (Level A) or 2110-31 (Level A)</td>
</tr>
<tr>
<td></td>
<td>Up to 16 total channels (or channel-equivalents)</td>
</tr>
<tr>
<td>B</td>
<td>24 bits, 48 kHz sampling</td>
</tr>
<tr>
<td></td>
<td>Up to eight (8) audio streams</td>
</tr>
<tr>
<td></td>
<td>each stream may be SMPTE 2110-30 (Level A) or 2110-31 (Level A)</td>
</tr>
<tr>
<td></td>
<td>Up to 32 total channels (or channel-equivalents)</td>
</tr>
</tbody>
</table>

Table 3. Audio Capability Sets

Receivers should incorporate a selection mechanism that allows the user to choose the mapping of audio channels from JPEG XS codestreams to subsequent devices or processes. If Receivers implement a re-mapping capability, then AMWA NMOS IS-08 shall be used for controlling this mapping.

8.3 Ancillary Data

Most SDI signals include Horizontal Ancillary (HANC) and Vertical Ancillary (VANC) data packets formatted in accordance with SMPTE ST 291-1. Senders compliant with this recommendation shall transport the ANC data packets (subject to the restrictions below) using SMPTE ST 2110-40. Receivers shall recover the ANC data and present it to the downstream application.

Since RFC 9134 includes a box structure for video specific metadata as a prefix to the JPEG XS codestream, it may be possible that a contradiction could occur between this ancillary metadata, metadata included within the SDP parameters and a potential SMPTE 2110-40 stream. Implementers shall follow best practices as indicated in this document to avoid duplication of metadata. If duplication is unavoidable, then metadata shall be consistent in each location with no difference. In regards to video metadata specifically, if a receiver detects a conflict, then JPEG XS stream metadata shall prevail.

Note: This document does not preclude applications from sending additional information through other stream formats in parallel with the streams described herein; in particular the VSF IPMX activity is developing some parallel stream formats for certain application metadata.
8.3.1 HANC and VANC data which are excluded from transport

Although embedded audio is formatted as HANC data, Senders shall use the method identified in section 8.2 for the transport of all audio signals.

Senders shall not use the methods in this section for audio.

The Embedded Audio Control Packet defined in SMPTE ST 299-1 should not be transmitted by Senders, and shall be ignored by Receivers if present in the ST 2110-40 stream. Receivers shall generate a locally correct Embedded Audio Control Packet based on their specific configuration if they are creating an SDI output.

EDH, CRC, and Line Number information, while present in the ancillary data spaces of SDI, are not formatted as ANC packets under SMPTE ST 291-1 and therefore shall not appear in SMPTE ST 2110-40 streams.

9. IP Encapsulation, Forward Error Correction, and Receiver Timing

Senders and Receivers compliant with this recommendation shall be able to create and process, respectively, IP streams that are compliant with SMPTE ST 2110-22.

If SMPTE ST 2022-5 FEC is implemented in a Sender, that Sender shall construct the FEC stream in accordance with SMPTE ST 2022-5, and signal that FEC is being used, as specified in SMPTE ST 2110-10.

If SMPTE ST 2022-5 FEC is implemented in a Receiver, that Receiver shall be able to process FEC streams constructed in accordance with SMPTE ST 2022-5 and shall make use of the signaling specified in 2110-10.

If SMPTE ST 2022-7 redundant streams are implemented in a Sender, then that Sender shall construct the redundant streams as described in SMPTE ST 2022-7 and shall signal them as specified in SMPTE ST 2110-10.

If SMPTE ST 2022-7 redundant streams are implemented in a Receiver, then that Receiver shall process the redundant streams which have been constructed in accordance with SMPTE ST 2022-7, and shall make use of the signaling specified in ST 2110-10.

Note: other FEC approaches may be used and if so, will be signaled in accordance with their defining documents; in particular the VSF IPMX activity FEC approach may be used.

Receivers shall implement one or more of the Timing Recovery Modes defined in Table 4 below.

<table>
<thead>
<tr>
<th>Timing Recovery Mode</th>
<th>Definition (normative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNC</td>
<td>Receivers shall be able to consume streams where the Sender’s ts-refclk is equivalent to the Receiver’s time source.</td>
</tr>
<tr>
<td></td>
<td>Video Senders and Receivers shall conform to type W in SMPTE ST 2110-21.</td>
</tr>
</tbody>
</table>
Note: Senders that implement the 2110TPNL traffic shape meet the requirements of 2110TPW.

<table>
<thead>
<tr>
<th></th>
<th>Receivers shall be able to consume streams where the Sender’s time reference differs from the Receiver’s time source.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Video Senders shall conform to type W in SMPTE ST 2110-21, while video Receivers shall be of type A in SMPTE ST 2110-21.</td>
</tr>
</tbody>
</table>

| | Video Senders shall conform to type W in SMPTE ST 2110-21, while Receivers shall implement the timing model defined in VSF TR-10-1. |

Table 4. Enumerated Names for the Timing Recovery Modes

10. Capability Sets and Interoperability Points

Senders and Receivers which claim conformance with this recommendation shall support one or more configuration(s). A configuration is defined by the intersection of a Conformance Level and a Capability Set, as specified in Table 5 below.

Senders and Receivers supporting a specific configuration in Table 5 below shall support all interoperability points listed for that configuration in Appendix B of this document.

Note: Appendix B contains a table of capability sets indexed by conformance level. The table provides reasonable coverage of common formats and features used in professional video applications at the time of the publication of this recommendation.

<table>
<thead>
<tr>
<th>Conformance Level</th>
<th>Capability Set A Intra-facility Use</th>
<th>Capability Set B Interfacility</th>
<th>Capability Set C Intra-campus with Multimedia extensions</th>
<th>Capability Set D Intra-campus with Multimedia extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Timing</td>
<td>SYNC</td>
<td>ASYNC and IPMX</td>
<td>IPMX</td>
</tr>
<tr>
<td>FHD</td>
<td>Video</td>
<td>JPEG XS</td>
<td>JPEG XS</td>
<td>JPEG XS</td>
</tr>
<tr>
<td></td>
<td>YCbCr 4:2:2 only</td>
<td>YCbCr 4:2:2 only</td>
<td>YCbCr 4:2:2, YCbCr 4:4:4, RGB 4:4:4</td>
<td>YCbCr 4:2:0, YCbCr 4:2:2, YCbCr 4:4:4</td>
</tr>
<tr>
<td></td>
<td>bit depth = 10</td>
<td>bit depth = 10</td>
<td>RGB 4:4:4</td>
<td>YCbCr 4:2:2, YCbCr 4:4:4</td>
</tr>
<tr>
<td></td>
<td>maximum rate = 4bpp</td>
<td>maximum rate = 4bpp</td>
<td>bit depth <= 12</td>
<td>RGB 4:4:4</td>
</tr>
<tr>
<td></td>
<td>frame rate <= 60Hz</td>
<td>frame rate <= 60Hz</td>
<td>maximum rate <= 4bpp</td>
<td>maximum rate <= 12</td>
</tr>
<tr>
<td></td>
<td>image width <= 1920</td>
<td>image width <= 1920</td>
<td>frame rate <= 60Hz</td>
<td>frame rate <= 60Hz</td>
</tr>
<tr>
<td></td>
<td>image height <= 1080</td>
<td>image height <= 1080</td>
<td>image width <= 2048</td>
<td>image width <= 2048</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>image height <= 1200</td>
<td>image height <= 1200</td>
</tr>
<tr>
<td>Audio</td>
<td>ACL-A</td>
<td>ACL-A</td>
<td>ACL-A</td>
<td>ACL-A</td>
</tr>
<tr>
<td>UHD1 (4K)</td>
<td>Video</td>
<td>JPEG XS</td>
<td>JPEG XS</td>
<td>JPEG XS</td>
</tr>
<tr>
<td></td>
<td>YCbCr 4:2:2 only</td>
<td>YCbCr 4:2:2 only</td>
<td>YCbCr 4:2:2, YCbCr 4:4:4, RGB 4:4:4</td>
<td>YCbCr 4:2:0, YCbCr 4:2:2, YCbCr 4:4:4</td>
</tr>
<tr>
<td></td>
<td>bit depth = 10</td>
<td>bit depth = 10</td>
<td>RGB 4:4:4</td>
<td>YCbCr 4:2:2, YCbCr 4:4:4</td>
</tr>
<tr>
<td></td>
<td>maximum rate = 4bpp</td>
<td>maximum rate = 4bpp</td>
<td>bit depth <= 12</td>
<td>RGB 4:4:4</td>
</tr>
<tr>
<td></td>
<td>frame rate <= 60Hz</td>
<td>frame rate <= 60Hz</td>
<td>maximum rate <= 4bpp</td>
<td>maximum rate <= 12</td>
</tr>
<tr>
<td></td>
<td>image width <= 2048</td>
<td>image width <= 2048</td>
<td>frame rate <= 60Hz</td>
<td>frame rate <= 60Hz</td>
</tr>
<tr>
<td></td>
<td>image height <= 1200</td>
<td>image height <= 1200</td>
<td>image width <= 2048</td>
<td>image height <= 1200</td>
</tr>
</tbody>
</table>

April 20, 2022
<table>
<thead>
<tr>
<th>Audio</th>
<th>ACL-B</th>
<th>ACL-B</th>
<th>ACL-A</th>
<th>ACL-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video</td>
<td>UHD2 (8K)</td>
<td>JPEG XS</td>
<td>JPEG XS</td>
<td>JPEG XS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YCbCr 4:2:2 only</td>
<td>YCbCr 4:2:2 only</td>
<td>YCbCr 4:2:2, YCbCr 4:4:4, RGB 4:4:4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bit depth = 10</td>
<td>bit depth = 10</td>
<td>bit depth <= 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>maximum rate = 4bpp</td>
<td>maximum rate = 4bpp</td>
<td>maximum rate = 4bpp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>frame rate <= 60Hz</td>
<td>frame rate <= 60Hz</td>
<td>frame rate <= 60Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>image width <= 7680</td>
<td>image width <= 7680</td>
<td>image width <= 8192</td>
</tr>
<tr>
<td></td>
<td></td>
<td>image height <= 4320</td>
<td>image height <= 4320</td>
<td>image height <= 4320</td>
</tr>
</tbody>
</table>

Table 5. Capability Sets
Appendix A (Informative) Session Description and NMOS Examples

The following Session Description Protocol (SDP) object describes a SMPTE ST2110-22 JPEG XS stream containing 720p@59.94Hz video, sent in duplicate using ST 2022-7.

Note the media subtype “jxsv” and the kilobits-per-second indication b=AS:116000 (116 megabits per second, or about 2 bpp plus overheads). The b=AS:<rate> is defined in SMPTE ST 2110-22. The optional level and sublevel terms are also shown

```plaintext
v=0
o=- 101202 53 IN IP4 10.0.81.54
s=237.0.0.50:22000
i=Nmos Testing 237.0.0.50:22000
t=0 0
a=recvonly
a=group:DUP PRIMARY SECONDARY
m=video 22000 RTP/AVP 98
c=IN IP4 237.0.0.50/32
a=source-filter: incl IN IP4 237.0.0.50 10.0.81.54
a=rtpmap:98 jxsv/90000
a=fmtp:98 sampling=YCbCr-4:2:2;width=1280;height=720;packetmode=0;exactframerate=60000/1001; dept h=10;TCS=SDR;colorimetry=BT709;SSN=ST2110-22:2019;TP=2110TPN;level=1k-1;sublevel=Sublev3bpp
b=AS:116000
a=ssrc:0 cname:nmos@nmos.tv
a=ts-refclk:ptp=IEEE1588-2008:08-00-11-FF-FE-22-91-3C:127
a=mediaclk:direct=0
a=mid:PRIMARY
m=video 22000 RTP/AVP 98
c=IN IP4 237.64.0.50/32
a=source-filter: incl IN IP4 237.64.0.50 10.0.81.154
a=rtpmap:98 jxsv/90000
a=fmtp:98 sampling=YCbCr-4:2:2;width=1280;height=720;packetmode=0;exactframerate=60000/1001;dept h=10;TCS=SDR;colorimetry=BT709;SSN=ST2110-22:2019;TP=2110TPN;level=1k-1;sublevel=Sublev3bpp
b=AS:116000
a=ssrc:0 cname:nmos@nmos.tv
a=ts-refclk:ptp=IEEE1588-2008:08-00-11-FF-FE-22-91-3C:127
a=mediaclk:direct=0
a=mid:SECONDARY
```

In particular, each JPEG XS capable video receiver must indicate subtype jxsv in its “caps” parameter (within the receiver object). An example of this is shown below.

```json
{  
  "device_id": "a2e5d793-b20c-31b2-baf5-0215a8f92b0d",  
  "transport": "urn:x-nmos:transport:rtp.mcast",  
  "format": "urn:x-nmos:format:video",  
  "subscription": {  
    "sender_id": null,  
    "active": true  
  },  
  "caps": {  
    "media_types": [  
      "video/jxsv"  
    ],  
    "interface_bindings": [  
      "eth0",  
      "eth1"  
    ]
}  
```
"description": "JPEG XS Test Receiver - video",
"tags": { "urn:x-nmos:tag:grouphint/v1.0": ["X:v1"] },
"id": "6aaf9e8-cb9f-3a15-9e25-6f50971ac7a2",
"version": "1643643942:666000",
"label": "JPEG XS Test Receiver - video"
}

In registering senders and receivers using AMWA IS-04, the JPEG XS capable receiver must indicate so using the same subtype in its “caps” parameter (part of the receiver object):

"caps": { "media_types": ["video/raw", "video/jxsv"] }

In the NMOS Flow object, again the media_type must indicate video/jxsv. Additional parameters may be added to the NMOS Flow schema for the average rate per frame in a future NMOS version.
Interoperability Points Capability Set A

| Interop Points | Capability Set | Timing | Conformance Level | Format & Frame Rate* | Sampling Points | Pixels per Second | Max Coding Efficiency Mbps | Max Coding Efficiency Bpp | Min Coding Efficiency Mbps | Min Coding Efficiency Bpp | Bit Depth | Color Sampling | Color Space | Audio Conformance Level | JPEG XS Profile | Reference Uncompressed Mbps | Video, Mbps |
|----------------|----------------|--------|-------------------|----------------------|-----------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------|---------------|-------------|--------------------------|----------------|--------------------------|
| 1 A SYNC | FHD | 720px1280/59 | 921,600 | 55,240,759 | 83 | 1.5 | 221 | 4.00 | 10bit | 4:2:2 | A | High | ITU-R BT.709-6 | High | Sublev4bpp | 1105 |
| 2 A SYNC | FHD | 720px1280/50 | 921,600 | 46,080,000 | 69 | 1.5 | 184 | 4.00 | 10bit | 4:2:2 | A | High | ITU-R BT.709-6 | High | Sublev4bpp | 922 |
| 3 ASYNC | FHD | 1080ix1920/29 | 2,073,600 | 62,145,854 | 93 | 1.5 | 249 | 4.00 | 10bit | 4:2:2 | A | High | ITU-R BT.709-6 | High | Sublev4bpp | 1243 |
| 4 ASYNC | FHD | 1080ix1920/25 | 2,073,600 | 51,840,000 | 78 | 1.5 | 207 | 4.00 | 10bit | 4:2:2 | A | High | ITU-R BT.709-6 | High | Sublev4bpp | 1037 |
| 5a ASYNC | FHD | 1080px1920/59 | 2,073,600 | 124,291,708 | 186 | 1.5 | 497 | 4.00 | 10bit | 4:2:2 | A | High | ITU-R BT.709-6 | High | Sublev4bpp | 2486 |
| 5b ASYNC | FHD | 1080px1920/59 | 2,073,600 | 124,291,708 | 186 | 1.5 | 497 | 4.00 | 10bit | 4:2:2 | A | High | ITU-R BT.2100-2 (PQ) | High | Sublev4bpp | 2486 |
| 5c ASYNC | FHD | 1080px1920/59 | 2,073,600 | 124,291,708 | 186 | 1.5 | 497 | 4.00 | 10bit | 4:2:2 | A | High | ITU-R BT.2100-2 (HLG) | High | Sublev4bpp | 2486 |
| 6a ASYNC | FHD | 1080px1920/50 | 2,073,600 | 103,680,000 | 156 | 1.5 | 415 | 4.00 | 10bit | 4:2:2 | A | High | ITU-R BT.709-6 | High | Sublev4bpp | 2074 |
| 6b ASYNC | FHD | 1080px1920/50 | 2,073,600 | 103,680,000 | 156 | 1.5 | 415 | 4.00 | 10bit | 4:2:2 | A | High | ITU-R BT.2100-2 (PQ) | High | Sublev4bpp | 2074 |
| 6c ASYNC | FHD | 1080px1920/50 | 2,073,600 | 103,680,000 | 156 | 1.5 | 415 | 4.00 | 10bit | 4:2:2 | A | High | ITU-R BT.2100-2 (HLG) | High | Sublev4bpp | 2074 |
| 7a ASYNC | UHD1 | 2160px3840/59 | 8,294,400 | 497,166,833 | 746 | 1.5 | 1989 | 4.00 | 10bit | 4:2:2 | B | High | ITU-R BT.2020-2 | High | Sublev4bpp | 9,943 |
| 7b ASYNC | UHD1 | 2160px3840/59 | 8,294,400 | 497,166,833 | 746 | 1.5 | 1989 | 4.00 | 10bit | 4:2:2 | B | High | ITU-R BT.2100-2 (PQ) | High | Sublev4bpp | 9,943 |
| 7c ASYNC | UHD1 | 2160px3840/59 | 8,294,400 | 497,166,833 | 746 | 1.5 | 1989 | 4.00 | 10bit | 4:2:2 | B | High | ITU-R BT.2100-2 (HLG) | High | Sublev4bpp | 9,943 |
| 8a ASYNC | UHD1 | 2160px3840/50 | 8,294,400 | 414,720,000 | 622 | 1.5 | 1659 | 4.00 | 10bit | 4:2:2 | B | High | ITU-R BT.2020-2 | High | Sublev4bpp | 8,294 |
| 8b ASYNC | UHD1 | 2160px3840/50 | 8,294,400 | 414,720,000 | 622 | 1.5 | 1659 | 4.00 | 10bit | 4:2:2 | B | High | ITU-R BT.2100-2 (PQ) | High | Sublev4bpp | 8,294 |
Interoperability Points Capability Set B

<table>
<thead>
<tr>
<th>Interop Points</th>
<th>Capability Set</th>
<th>Timing</th>
<th>Conformance Level</th>
<th>Format & Frame Rate*</th>
<th>Sampling Points</th>
<th>Pixels per Second</th>
<th>Max Coding Efficiency Mbps</th>
<th>Max Coding Efficiency Bpp</th>
<th>Min Coding Efficiency Mbps</th>
<th>Min Coding Efficiency Bpp</th>
<th>Bit Depth</th>
<th>Color Sampling</th>
<th>Color Space</th>
<th>Audio Conformance Level</th>
<th>JPEG XS Profile</th>
<th>Reference Uncompressed Mbps Video, Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 B ASYNC FHD</td>
<td>720px1280/59</td>
<td>921,600</td>
<td>55,240,759</td>
<td>83</td>
<td>1.5</td>
<td>221</td>
<td>4.00</td>
<td>10bit</td>
<td>4:2:2</td>
<td>4:2:2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1K-1 Sublev4bpp 1105</td>
</tr>
<tr>
<td>2 B ASYNC FHD</td>
<td>720px1280/50</td>
<td>921,600</td>
<td>46,080,000</td>
<td>69</td>
<td>1.5</td>
<td>184</td>
<td>4.00</td>
<td>10bit</td>
<td>4:2:2</td>
<td>4:2:2</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1K-1 Sublev4bpp 922</td>
</tr>
<tr>
<td>3 B ASYNC FHD</td>
<td>1080px1920/29</td>
<td>2,073,600</td>
<td>62,145,854</td>
<td>93</td>
<td>1.5</td>
<td>249</td>
<td>4.00</td>
<td>10bit</td>
<td>4:2:2</td>
<td>4:2:2</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2K-1 Sublev4bpp 1243</td>
</tr>
<tr>
<td>4 B ASYNC FHD</td>
<td>1080px1920/25</td>
<td>2,073,600</td>
<td>51,840,000</td>
<td>78</td>
<td>1.5</td>
<td>207</td>
<td>4.00</td>
<td>10bit</td>
<td>4:2:2</td>
<td>4:2:2</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2K-1 Sublev4bpp 1037</td>
</tr>
<tr>
<td>5a B ASYNC FHD</td>
<td>1080px1920/59</td>
<td>2,073,600</td>
<td>124,291,708</td>
<td>186</td>
<td>1.5</td>
<td>497</td>
<td>4.00</td>
<td>10bit</td>
<td>4:2:2</td>
<td>4:2:2</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2K-1 Sublev4bpp 2486</td>
</tr>
<tr>
<td>5b B ASYNC FHD</td>
<td>1080px1920/59</td>
<td>2,073,600</td>
<td>124,291,708</td>
<td>186</td>
<td>1.5</td>
<td>497</td>
<td>4.00</td>
<td>10bit</td>
<td>4:2:2</td>
<td>4:2:2</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2K-1 Sublev4bpp 2486</td>
</tr>
<tr>
<td>5c B ASYNC FHD</td>
<td>1080px1920/59</td>
<td>2,073,600</td>
<td>124,291,708</td>
<td>186</td>
<td>1.5</td>
<td>497</td>
<td>4.00</td>
<td>10bit</td>
<td>4:2:2</td>
<td>4:2:2</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2K-1 Sublev4bpp 2486</td>
</tr>
<tr>
<td>6a B ASYNC FHD</td>
<td>1080px1920/50</td>
<td>2,073,600</td>
<td>103,680,000</td>
<td>156</td>
<td>1.5</td>
<td>415</td>
<td>4.00</td>
<td>10bit</td>
<td>4:2:2</td>
<td>4:2:2</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2K-1 Sublev4bpp 2074</td>
</tr>
</tbody>
</table>

* Video format is given as active lines, scanning (interlaced or progressive) and frame rate (59.9 is equivalent to 60/1.001, while 29.97 is equivalent to 30/1.001)

** Sublevel: shall be set to Sublev3bpp or Sublev4bpp when the bpp is less than or equal to 3bpp, and shall be set to Sublev4bpp when the bpp exceeds 3bpp. Implementations compliant with this TR shall not set Sublevel to any other values.

April 20, 2022
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6b 1080px1920/50</td>
<td>B</td>
<td>ASYNC</td>
<td>FHD</td>
<td>2,073,600</td>
<td>103,680,000</td>
<td>156</td>
<td>1.5</td>
<td>415</td>
</tr>
<tr>
<td>6c 1080px1920/50</td>
<td>B</td>
<td>ASYNC</td>
<td>FHD</td>
<td>2,073,600</td>
<td>103,680,000</td>
<td>156</td>
<td>1.5</td>
<td>415</td>
</tr>
<tr>
<td>7a 2160p3840/59</td>
<td>B</td>
<td>ASYNC</td>
<td>UHD1</td>
<td>8,294,400</td>
<td>497,166,833</td>
<td>746</td>
<td>1.5</td>
<td>1989</td>
</tr>
<tr>
<td>7b 2160p3840/59</td>
<td>B</td>
<td>ASYNC</td>
<td>UHD1</td>
<td>8,294,400</td>
<td>497,166,833</td>
<td>746</td>
<td>1.5</td>
<td>1989</td>
</tr>
<tr>
<td>7c 2160p3840/59</td>
<td>B</td>
<td>ASYNC</td>
<td>UHD1</td>
<td>8,294,400</td>
<td>497,166,833</td>
<td>746</td>
<td>1.5</td>
<td>1989</td>
</tr>
<tr>
<td>8a 2160p3840/59</td>
<td>B</td>
<td>ASYNC</td>
<td>UHD1</td>
<td>8,294,400</td>
<td>414,720,000</td>
<td>622</td>
<td>1.5</td>
<td>1659</td>
</tr>
<tr>
<td>8b 2160p3840/59</td>
<td>B</td>
<td>ASYNC</td>
<td>UHD1</td>
<td>8,294,400</td>
<td>414,720,000</td>
<td>622</td>
<td>1.5</td>
<td>1659</td>
</tr>
<tr>
<td>8c 2160p3840/59</td>
<td>B</td>
<td>ASYNC</td>
<td>UHD1</td>
<td>8,294,400</td>
<td>414,720,000</td>
<td>622</td>
<td>1.5</td>
<td>1659</td>
</tr>
<tr>
<td>9a 4320p7680/59</td>
<td>B</td>
<td>ASYNC</td>
<td>UHD2</td>
<td>33,177,600</td>
<td>1,988,667,333</td>
<td>2983</td>
<td>1.5</td>
<td>7955</td>
</tr>
<tr>
<td>9b 4320p7680/59</td>
<td>B</td>
<td>ASYNC</td>
<td>UHD2</td>
<td>33,177,600</td>
<td>1,988,667,333</td>
<td>2983</td>
<td>1.5</td>
<td>7955</td>
</tr>
<tr>
<td>9c 4320p7680/59</td>
<td>B</td>
<td>ASYNC</td>
<td>UHD2</td>
<td>33,177,600</td>
<td>1,988,667,333</td>
<td>2983</td>
<td>1.5</td>
<td>7955</td>
</tr>
<tr>
<td>10a 4320p7680/50</td>
<td>B</td>
<td>ASYNC</td>
<td>UHD2</td>
<td>33,177,600</td>
<td>1,658,880,000</td>
<td>2488</td>
<td>1.5</td>
<td>6636</td>
</tr>
<tr>
<td>10b 4320p7680/50</td>
<td>B</td>
<td>ASYNC</td>
<td>UHD2</td>
<td>33,177,600</td>
<td>1,658,880,000</td>
<td>2488</td>
<td>1.5</td>
<td>6636</td>
</tr>
<tr>
<td>10c 4320p7680/50</td>
<td>B</td>
<td>ASYNC</td>
<td>UHD2</td>
<td>33,177,600</td>
<td>1,658,880,000</td>
<td>2488</td>
<td>1.5</td>
<td>6636</td>
</tr>
</tbody>
</table>

*Video format is given as active lines, scanning (interlaced or progressive) and frame rate (59.9 is equivalent to 60/1.001; while 29.97 is equivalent to 30/1.001) **Sublevel: shall be set to Sublev3bpp or Sublev4bpp when the bpp is less than or equal to 3bpp, and shall be set to Sublev4bpp when the bpp exceeds 3bpp. Implementations compliant with this TR shall not set Sublevel to any other values.
Interoperability Points Capability Set C

<table>
<thead>
<tr>
<th>Inter-op Points</th>
<th>Cap-ability Set</th>
<th>Timing</th>
<th>Conformance Level</th>
<th>Format & Frame Rate*</th>
<th>Sampling Points</th>
<th>Pixels per Second</th>
<th>Max Coding Efficiency Mbps</th>
<th>Max Coding Efficiency Bpp</th>
<th>Min Coding Efficiency Mbps</th>
<th>Min Coding Efficiency Bpp</th>
<th>Bit Depth</th>
<th>Color Sampling ***</th>
<th>Color Space</th>
<th>Audio Conformance Level</th>
<th>JPEG XS Profile</th>
<th>Reference Uncompressed Mbps Video, Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a C ASYNC FHD 1080px1920/59*</td>
<td>2,073,600</td>
<td>124,291,708</td>
<td>186</td>
<td>1.5</td>
<td>497</td>
<td>4.00</td>
<td>8bit</td>
<td>RGB 4:4:4</td>
<td>Rec. ITU-R BT.709-6</td>
<td>A</td>
<td>High 444.12</td>
<td>2K-1</td>
<td>Sublev4bpp</td>
<td>2983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b C ASYNC FHD 1080px1920/50</td>
<td>2,073,600</td>
<td>103,680,000</td>
<td>156</td>
<td>1.5</td>
<td>415</td>
<td>4.00</td>
<td>8bit</td>
<td>RGB 4:4:4</td>
<td>Rec. ITU-R BT.709-6</td>
<td>A</td>
<td>High 444.12</td>
<td>2K-1</td>
<td>Sublev4bpp</td>
<td>2488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c C ASYNC FHD 1080px1920/60</td>
<td>2,073,600</td>
<td>124,416,000</td>
<td>187</td>
<td>1.5</td>
<td>498</td>
<td>4.00</td>
<td>10bit</td>
<td>RGB 4:4:4</td>
<td>Rec. ITU-R BT.709-6</td>
<td>A</td>
<td>High 444.12</td>
<td>2K-1</td>
<td>Sublev4bpp</td>
<td>3732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1d C ASYNC FHD 1080px1920/59*</td>
<td>2,073,600</td>
<td>124,291,708</td>
<td>186</td>
<td>1.5</td>
<td>497</td>
<td>4.00</td>
<td>8bit</td>
<td>YCbCr 4:4:4</td>
<td>Rec. ITU-R BT.709-6</td>
<td>A</td>
<td>High 444.12</td>
<td>2K-1</td>
<td>Sublev4bpp</td>
<td>2983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a C ASYNC FHD 1200px1920/60</td>
<td>2,304,000</td>
<td>138,101,898</td>
<td>207</td>
<td>1.5</td>
<td>552</td>
<td>4.00</td>
<td>8bit</td>
<td>Full Range RGB 4:4:4</td>
<td>Rec. ITU-R BT.709-6</td>
<td>A</td>
<td>High 444.12</td>
<td>4K-1</td>
<td>Sublev4bpp</td>
<td>3318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2b C ASYNC FHD 1200px1920/50</td>
<td>2,304,000</td>
<td>115,200,000</td>
<td>173</td>
<td>1.5</td>
<td>461</td>
<td>4.00</td>
<td>8bit</td>
<td>Full Range RGB 4:4:4</td>
<td>Rec. ITU-R BT.709-6</td>
<td>A</td>
<td>High 444.12</td>
<td>4K-1</td>
<td>Sublev4bpp</td>
<td>2765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a C ASYNC UHD 2160px3840/59*</td>
<td>8,294,400</td>
<td>497,166,833</td>
<td>746</td>
<td>1.5</td>
<td>1991</td>
<td>4.00</td>
<td>8bit</td>
<td>RGB 4:4:4</td>
<td>Rec. ITU-R BT.709-6</td>
<td>B</td>
<td>High 444.12</td>
<td>4K-2</td>
<td>Sublev4bpp</td>
<td>11,932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b C ASYNC UHD 2160px3840/59*</td>
<td>8,294,400</td>
<td>497,166,833</td>
<td>746</td>
<td>1.5</td>
<td>1991</td>
<td>4.00</td>
<td>10bit</td>
<td>YCbCr 4:4:4</td>
<td>Rec. ITU-R BT.2100-2</td>
<td>B</td>
<td>High 444.12</td>
<td>4K-2</td>
<td>Sublev4bpp</td>
<td>14,915</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3c C ASYNC UHD 2160px3840/59*</td>
<td>8,294,400</td>
<td>497,166,833</td>
<td>746</td>
<td>1.5</td>
<td>1991</td>
<td>4.00</td>
<td>10bit</td>
<td>YCbCr 4:4:4</td>
<td>Rec. ITU-R BT.2100-2 (PQ)</td>
<td>B</td>
<td>High 444.12</td>
<td>4K-2</td>
<td>Sublev4bpp</td>
<td>14,915</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d C ASYNC UHD 2160px3840/59*</td>
<td>8,294,400</td>
<td>497,166,833</td>
<td>746</td>
<td>1.5</td>
<td>1991</td>
<td>4.00</td>
<td>10bit</td>
<td>YCbCr 4:4:4</td>
<td>Rec. ITU-R BT.2100-2 (HLG)</td>
<td>B</td>
<td>High 444.12</td>
<td>4K-2</td>
<td>Sublev4bpp</td>
<td>14,915</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capability set C includes all items 1-10c in Capability Set B, Below are only the additional interop points
<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>C</td>
<td>ASYNC</td>
<td>UHD 2</td>
<td>4320px7680/59*</td>
<td>33,177,600</td>
<td>1,988,667,333</td>
<td>2986</td>
<td>1.5</td>
<td>7963</td>
<td>4.00</td>
<td>10bit</td>
<td>YCbCr 4:4:4</td>
<td>Rec. ITU-R BT.2100-2</td>
</tr>
<tr>
<td>4b</td>
<td>C</td>
<td>ASYNC</td>
<td>UHD 2</td>
<td>4320px7680/59*</td>
<td>33,177,600</td>
<td>1,988,667,333</td>
<td>2986</td>
<td>1.5</td>
<td>7963</td>
<td>4.00</td>
<td>10bit</td>
<td>YCbCr 4:4:4</td>
<td>Rec. ITU-R BT.2100-2 (PQ)</td>
</tr>
<tr>
<td>4c</td>
<td>C</td>
<td>ASYNC</td>
<td>UHD 2</td>
<td>4320px7680/59*</td>
<td>33,177,600</td>
<td>1,988,667,333</td>
<td>2986</td>
<td>1.5</td>
<td>7963</td>
<td>4.00</td>
<td>10bit</td>
<td>YCbCr 4:4:4</td>
<td>Rec. ITU-R BT.2100-2 (HLG)</td>
</tr>
</tbody>
</table>

*Video format is given as active lines, scanning (interlaced or progressive) and frame rate (59 is used to indicate 59.94, with the actual value given by 60/1.001, while 29 is used to indicate 29.97, with the actual value given by 30/1.001)

**Sublevel: shall be set to Sublev3bpp or Sublev4bpp when the bpp is less than or equal to 3bpp, and shall be set to Sublev4bpp when the bpp exceeds 3bpp. Implementations compliant with this TR shall not set Sublevel to any other values.

***Full Range is indicated, on 2a and 2b. where not indicated all others are limited range (RGB or YCbCr)
Interoperability Points Capability Set D

<table>
<thead>
<tr>
<th>Interop Points</th>
<th>Capability Set</th>
<th>Timing</th>
<th>Conformance Level</th>
<th>Format & Frame Rate*</th>
<th>Sampling Points</th>
<th>Pixels per Frame</th>
<th>Max Coding Efficiency Mbps</th>
<th>Max Coding Efficiency Bpp</th>
<th>Min Coding Efficiency Mbps</th>
<th>Min Coding Efficiency Bpp</th>
<th>Bit Depth</th>
<th>Color Sampling ****</th>
<th>Color Space</th>
<th>Audio Conformance Level</th>
<th>JPEG XS Profile</th>
<th>Reference Uncompressed Mbps Video, Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a D ASYNC UHD 1</td>
<td>2160pX3840/59*</td>
<td>8,294,400</td>
<td>497,166,833</td>
<td>746</td>
<td>1.5</td>
<td>1989</td>
<td>4.00</td>
<td>8bit</td>
<td>YCbCr 4:2:0</td>
<td>Rec. ITU-R BT. 2020-2</td>
<td>B</td>
<td>Custom</td>
<td>4K-2</td>
<td>Sublev4bpp</td>
<td>5,966</td>
<td></td>
</tr>
<tr>
<td>1b D ASYNC UHD 1</td>
<td>2160pX3840/50</td>
<td>8,294,400</td>
<td>414,720,000</td>
<td>622</td>
<td>1.5</td>
<td>1659</td>
<td>4.00</td>
<td>8bit</td>
<td>YCbCr 4:2:0</td>
<td>Rec. ITU-R BT. 2020-2</td>
<td>B</td>
<td>Custom</td>
<td>4K-2</td>
<td>Sublev4bpp</td>
<td>4,977</td>
<td></td>
</tr>
<tr>
<td>1c D ASYNC UHD 1</td>
<td>2160pX3840/59*</td>
<td>8,294,400</td>
<td>497,166,833</td>
<td>746</td>
<td>1.5</td>
<td>1989</td>
<td>4.00</td>
<td>10bit</td>
<td>YCbCr 4:2:0</td>
<td>Rec. ITU-R BT. 2020-2</td>
<td>B</td>
<td>Custom</td>
<td>4K-2</td>
<td>Sublev4bpp</td>
<td>7,458</td>
<td></td>
</tr>
<tr>
<td>1d D ASYNC UHD 1</td>
<td>2160pX3840/59*</td>
<td>8,294,400</td>
<td>497,166,833</td>
<td>746</td>
<td>1.5</td>
<td>1989</td>
<td>4.00</td>
<td>12bit</td>
<td>YCbCr 4:2:0</td>
<td>Rec. ITU-R BT. 2020-2</td>
<td>B</td>
<td>High 444.12</td>
<td>4K-2</td>
<td>Sublev4bpp</td>
<td>8,949</td>
<td></td>
</tr>
<tr>
<td>2a C ASYNC UHD 2</td>
<td>4320pX7680/59*</td>
<td>33,177,600</td>
<td>1,988,667,333</td>
<td>2983</td>
<td>1.5</td>
<td>7955</td>
<td>4.00</td>
<td>10bit</td>
<td>YCbCr 4:2:0</td>
<td>Rec. ITU-R BT.2100-2</td>
<td>B</td>
<td>High 444.12</td>
<td>8K-2</td>
<td>Sublev4bpp</td>
<td>29,830</td>
<td></td>
</tr>
<tr>
<td>2b C ASYNC UHD 2</td>
<td>4320pX7680/59*</td>
<td>33,177,600</td>
<td>1,988,667,333</td>
<td>2983</td>
<td>1.5</td>
<td>7955</td>
<td>4.00</td>
<td>10bit</td>
<td>YCbCr 4:2:0</td>
<td>Rec. ITU-R BT.2100-2 (PQ)</td>
<td>B</td>
<td>High 444.12</td>
<td>8K-2</td>
<td>Sublev4bpp</td>
<td>29,830</td>
<td></td>
</tr>
<tr>
<td>2c C ASYNC UHD 2</td>
<td>4320pX7680/59*</td>
<td>33,177,600</td>
<td>1,988,667,333</td>
<td>2983</td>
<td>1.5</td>
<td>7955</td>
<td>4.00</td>
<td>10bit</td>
<td>YCbCr 4:2:0</td>
<td>Rec. ITU-R BT.2100-2 (HLG)</td>
<td>B</td>
<td>High 444.12</td>
<td>8K-2</td>
<td>Sublev4bpp</td>
<td>29,830</td>
<td></td>
</tr>
</tbody>
</table>

*Video format is given as active lines, scanning (interlaced or progressive) and frame rate (59.9 is equivalent to 60/1.001, while 29.97 is equivalent to 30/1.001).

**Sublevel: shall be set to Sublev3bpp or Sublev4bpp when the bpp is less than or equal to 3bpp, and shall be set to Sublev4bpp when the bpp exceeds 3bpp. Implementations compliant with this TR shall not set Sublevel to any other values.

***The Custom profile used in the table is identical to the High 444.12 profile, but allowing for 4:2:0 sampling. Because it is not an official JPEG XS profile, it is signaled with Ppih set to 0x0000.

****Full Range is indicated, where all others are limited range (RGB or YCbCr).

Capability set D includes all items 1-10c in Capability Set B, all items in Capability Set C 1a-4c. Below are only the additional interop points.