
 
 

Preamble to Video Services Forum (VSF) 

Technical Recommendation TR-06-2:2022 
 

August 11, 2022 

 

The attached document is a revision of the 2021 TR-06-2 RIST Main Profile Specification to include 

support for the VSF EtherType.  The earlier revisions of TR-06-2 used the experimental EtherTypes for 

the Reduced Overhead and Keep-Alive packets.  VSF has now registered its own EtherType with the 

IEEE, and thus TR-06-2 has been revised to use this value. 

 

The following changes and additions have been made to TR-06-2:2022: 

 New packet formats using the VSF EtherType have been introduced for Reduced Overhead and 

Keep-Alive packets.  This is done using an extensible format that allows for future uses of the 

VSF EtherType in a compatible manner. 

 A mechanism to allow a device to compliant with TR-06-2:2022 to interoperate in a transparent 

manner with devices compliant with previous versions of the TR. 

 Appendices have been renamed to Annexes, in order to bring the TR in line with published 

standards. 

 Full documentation of the PSK Authentication protocol referenced in Section 7.5.  This protocol 

can be found in Annex D. 

 One normative difference in Section 5.6.2 pertains to the tunnel timeout.  Previous versions of the 

TR fixed the timeout to 60 seconds.  The 2022 version still recommends a default timeout of 60 

seconds, but allows the implementations to use different values. 

 Various language changes to clarify certain parts of the TR, without changing the protocol 

operation. 

 

For additional information about the RIST Activity group, or to find out about participating in the 

development of future specifications, please visit http://vsf.tv/RIST.shtml 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved August 11, 2022 

 

Video Services Forum (VSF) 

Technical Recommendation TR-06-2 
 

Reliable Internet Stream Transport (RIST) 
Protocol Specification – Main Profile 

 



 

 2 VSF TR-06-2 
 

 

 
INTELLECTUAL PROPERTY RIGHTS 

THE FORUM DRAWS ATTENTION TO THE FACT THAT IT IS CLAIMED THAT 

COMPLIANCE WITH THIS RECOMMENDATION MAY INVOLVE THE USE OF A PATENT 

("IPR") CONCERNING SECTIONS 5 (EXCEPT SECTION 5.6.4), 6, AND 7. 

 THE FORUM TAKES NO POSITION CONCERNING THE EVIDENCE, VALIDITY OR 

SCOPE OF THIS IPR. 

 THE HOLDER OF THIS IPR HAS ASSURED THE FORUM THAT IT IS WILLING TO 

LICENSE ALL IPR IT OWNS AND ANY THIRD PARTY IPR IT HAS THE RIGHT TO 

SUBLICENSE WHICH MIGHT BE INFRINGED BY ANY IMPLEMENTATION OF THIS 

RECOMMENDATION TO THE FORUM AND THOSE LICENSEES (MEMBERS AND NON-

MEMBERS ALIKE) DESIRING TO IMPLEMENT THIS RECOMMENDATION. 

INFORMATION MAY BE OBTAINED FROM: 

 VIDEO-FLOW.LTD 

11 HA'AMAL ST. ROSH HA'AYIN ISRAEL, 4809241 

 ATTENTION IS ALSO DRAWN TO THE POSSIBILITY THAT SOME OF THE ELEMENTS 

OF THIS RECOMMENDATION MAY BE THE SUBJECT OF IPR OTHER THAN THOSE 

IDENTIFIED ABOVE. THE FORUM SHALL NOT BE RESPONSIBLE FOR IDENTIFYING 

ANY OR ALL SUCH IPR. 

THIS RECOMMENDATION IS BEING OFFERED WITHOUT ANY WARRANTY 

WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS 

EXPRESSLY DISCLAIMED. ANY USE OF THIS RECOMMENDATION SHALL BE MADE 

ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR 

ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY 

WHATSOEVER TO ANY MPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF 

ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE 

OF THIS RECOMMENDATION.  

LIMITATION OF LIABILITY 

© 2022 Video Services Forum 

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 

International License. To view a copy of this license, visit  

https://creativecommons.org/licenses/by-nd/4.0/ 

or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. 

 

 

http://www.videoservicesforum.org 

http://www.videoservicesforum.org/


 

 3 VSF TR-06-2 
 

 

VSF SHALL NOT BE LIABLE FOR ANY AND ALL DAMAGES, DIRECT OR INDIRECT, 

ARISING FROM OR RELATING TO ANY USE OF THE CONTENTS CONTAINED HEREIN, 

INCLUDING WITHOUT LIMITATION ANY AND ALL INDIRECT, SPECIAL, INCIDENTAL 

OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS, 

LOSS OF PROFITS, LITIGATION, OR THE LIKE), WHETHER BASED UPON BREACH OF 

CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT 

LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 

DAMAGES. THE FOREGOING NEGATION OF DAMAGES IS A FUNDAMENTAL 

ELEMENT OF THE USE OF THE CONTENTS HEREOF, AND THESE CONTENTS WOULD 

NOT BE PUBLISHED BY VSF WITHOUT SUCH LIMITATIONS.



 

 4 VSF TR-06-2 
 

 

Executive Summary 

Many solutions exist in the market for reliable streaming over the Internet. These solutions all 

use the same types of techniques, but they are all proprietary and do not interoperate with each 

other. This Technical Recommendation contains a protocol specification for reliable streaming 

over the Internet, so end users can mix and match solutions from different vendors. 

Recipients of this document are requested to submit notification of any relevant patent claims or 

other intellectual property rights of which they may be aware that might be infringed by any 

implementation of the Recommendation set forth in this document, and to provide supporting 

documentation.  



 

 5 VSF TR-06-2 
 

 

 

Table of Contents 
Table of Contents ............................................................................................................................ 5 

1 Introduction (Informative) ...................................................................................................... 8 

1.1 Contributors ...................................................................................................................... 8 

1.2 About the Video Services Forum ..................................................................................... 8 

2 Conformance Notation ............................................................................................................ 9 

3 References ............................................................................................................................. 10 

4 RIST Profiles (Informative) .................................................................................................. 11 

5 Stream Multiplexing and Tunneling Support ....................................................................... 11 

5.1 General Operation .......................................................................................................... 12 

5.2 Use of the VSF EtherType in GRE Packets ................................................................... 14 

5.3 Tunneling Modes............................................................................................................ 15 

5.3.1 Full Datagram Mode ............................................................................................... 15 

5.3.2 Reduced Overhead Mode ........................................................................................ 15 

5.4 Processing of Tunnel Packets at the Receiving End ...................................................... 17 

5.5 Tunnel-Level Multi-Path Operation ............................................................................... 18 

5.6 Tunnel Establishment ..................................................................................................... 18 

5.6.1 Introduction (Informative) ...................................................................................... 18 

5.6.2 Keep-Alive Message Requirements ........................................................................ 19 

5.6.3 Keep-Alive Message Format .................................................................................. 19 

5.6.4 Keep-Alive Message Payload ................................................................................. 22 

5.6.4.1 Example Exchange (Informative) .................................................................... 23 

5.6.5 Disconnect Message................................................................................................ 24 

5.6.6 Reconnect Message ................................................................................................. 25 

5.6.7 Source and Destination IP Addresses in Tunneled RIST Packets .......................... 25 

5.6.8 Keep-Alive Message Fragmentation....................................................................... 27 

6 DTLS Support ....................................................................................................................... 27 

6.1 Session Establishment .................................................................................................... 27 

6.2 Supported DTLS Cipher Suites ...................................................................................... 27 



 

 6 VSF TR-06-2 
 

 

6.3 Certificate Configuration................................................................................................ 28 

6.4 TLS-SRP Support ........................................................................................................... 28 

7 Pre-Shared Key Encryption Support ..................................................................................... 29 

7.1 GRE Header with K Field Turned On ............................................................................ 29 

7.2 Sequence and Nonce ...................................................................................................... 29 

7.3 AES Encryption Key and Sequences ............................................................................. 30 

7.4 On-The-Fly Passphrase Change ..................................................................................... 31 

7.5 PSK Authentication using EAP SRP ............................................................................. 33 

7.6 PSK Future Nonce Announcement Message ................................................................. 33 

8 NULL Packet Deletion and High Bitrate Operation ............................................................. 34 

8.1 NULL Packet Deletion (Informative) ............................................................................ 34 

8.2 High Bitrate and/or High Latency Operation (Informative) .......................................... 35 

8.3 RTP Header Extension to Support NULL Packet Deletion and Extended Sequence 

Numbers .................................................................................................................................... 35 

8.4 NACK Packet Support for Extended Sequence Numbers ............................................. 36 

8.5 NULL Packet Deletion Example (Informative) ............................................................. 37 

8.6 Combining NULL Packet Deletion and Sequence Number Extension with SMPTE-

2022-1 FEC ............................................................................................................................... 39 

8.6.1 Sequence Number Extension .................................................................................. 39 

8.6.2 NULL Packet Deletion ........................................................................................... 40 

9 Compatibility between RIST Main Profile and Simple Profile Devices .............................. 40 

10 Compatibility with RIST Main Profile Devices Implementing TR-06-2:2021 and Earlier 

Versions (Informative) .................................................................................................................. 41 

Annex A Certificate Management (Informative) .......................................................................... 42 

A.1 Certificate Processing ......................................................................................................... 42 

A.2 Discussion of Certificate Authorities (CA) ........................................................................ 42 

A.3 Remote Certificate Processing at the Local RIST Device ................................................. 43 

A.4 Notes on Blocked Lists and Accepted Lists ....................................................................... 43 

A.5 Certificate Signing Requests .............................................................................................. 43 

A.6 Certificate and Key File Formats ....................................................................................... 44 

Annex B PSK Key Generation Example (Informative) ................................................................ 46 

Annex C Supporting Multiple Clients Using the Same Server UDP Port (Informative) ............. 47 



 

 7 VSF TR-06-2 
 

 

Annex D Specification of the EAP SHA256-SRP6a Authentication Protocol (Normative) ........ 49 

D.1 General Overview............................................................................................................... 49 

D.2 Authentication Algorithm and Protocol ............................................................................. 49 

D.3 Packet Formats ................................................................................................................... 52 

D.3.1 EAP Encapsulation ..................................................................................................... 52 

D.3.2 EAPOL Type 0 Packet Format ................................................................................... 53 

D.3.3 Request And Response Packet Formats ...................................................................... 54 

D.3.3.1 Identity Request/Response Packets ...................................................................... 55 

D.3.3.2 Nak Response Packets ......................................................................................... 55 

D.3.4 EAP SRP-SHA256 Packet Formats ............................................................................ 56 

D.3.4.3 EAP SRP-SHA256 Challenge Request Packet .................................................... 56 

D.3.4.4 EAP SRP-SHA256 Client Key Response Packet ................................................ 58 

D.3.4.5 EAP SRP-SHA256 Server Key Request Packet .................................................. 59 

D.3.4.6 EAP SRP-SHA256 Client Validator Response Packet ........................................ 59 

D.3.4.7 EAP SRP-SHA256 Server Validator Request Packet.......................................... 60 

D.3.4.8 EAP SRP-SHA256 Passphrase Request Packet................................................... 61 

D.3.4.9 EAP SRP-SHA256 Passphrase Response Packet ................................................ 62 

D.3.5 Success and Failure Packet Formats ........................................................................... 63 

D.4 Protocol Exchanges ............................................................................................................ 64 

D.5 Re-Authentication .............................................................................................................. 65 

D.6 UDP Transport Considerations .......................................................................................... 66 

D.7 Multicast Authentication (Informative).............................................................................. 67 

D.8 Multi-Link Operation (Informative) ................................................................................... 68 

D.9 Authentication Example (Informative) .............................................................................. 69 

 

  



 

 8 VSF TR-06-2 
 

 

1 Introduction (Informative) 

As broadcasters and other video users increasingly utilize unconditioned Internet circuits to 

transport high-quality video, the demand grows for systems that can compensate for the packet 

losses and delay variation that often affect these streams. A variety of solutions are currently 

available on the market; however, incompatibilities exist between devices from different 

suppliers. 

The Reliable Internet Stream Transport (RIST) project was launched specifically to address the 

lack of compatibility between devices, and to define a set of interoperability points through the 

use of existing or new standards and recommendations.  

1.1  Contributors 
The following individuals participated in the Video Services Forum RIST working group that 

developed this technical recommendation. 

Merrick Ackermans 

(CBS/Paramount) 

Sergio Ammirata 

(SipRadius/AMMUX) 

Paul  Atwell (Media Transport 

Solutions) 

Uri Avni (Zixi) John Beer (QVidium) Rishi Chhibber (Cisco) 

Mike Coleman (AWS 

Elemental) 

Eric  Fankhauser (Evertz) Ronald Fellman (QVidium) 

Michael Firth (Nevion) Rafael Fonseca (Artel) Oded Gants (Zixi) 

Nick Nicas (AT&T) Ciro Noronha (Cobalt 

Digital) 

Gijs Peskens (SipRadius) 

Hermann Popp (Arri) Steve Riedl (Turner) Adi Rozenberg (AlvaLinks) 

Manjinder Sandhu (Evertz) Wes Simpson (Telecom 

Product Consulting) 

Mikael Wånggren (Net Insight) 

 

This technical recommendation builds upon VSF TR-06-1. The list of contributors to TR-06-1 

can be found in section 1.1 of that document. 

1.2  About the Video Services Forum 

The Video Services Forum, Inc. (www.videoservicesforum.org) is an international association 

dedicated to video transport technologies, interoperability, quality metrics and education. The 

VSF is composed of service providers, users and manufacturers. The organization’s activities 

include:  

 providing forums to identify issues involving the development, engineering, installation, 

testing and maintenance of audio and video services; 

 exchanging non-proprietary information to promote the development of video transport 

service technology and to foster resolution of issues common to the video services industry; 

 identification of video services applications and educational services utilizing video 

transport services; 

http://www.videoservicesforum.org/
http://www.videoservicesforum.org/members/members.htm


 

 9 VSF TR-06-2 
 

 

 promoting interoperability and encouraging technical standards for national and 

international standards bodies. 

The VSF is an association incorporated under the Not For Profit Corporation Law of the State of 

New York. Membership is open to businesses, public sector organizations and individuals 

worldwide. For more information on the Video Services Forum or this document,  

please call +1 929-279-1995 or e-mail opsmgr@videoservicesforum.org.  

2 Conformance Notation 
Normative text is text that describes elements of the design that are indispensable or contains the 

conformance language keywords: "shall", "should", or "may". Informative text is text that is 

potentially helpful to the user, but not indispensable, and can be removed, changed, or added 

editorially without affecting interoperability. Informative text does not contain any conformance 

keywords.  

All text in this document is, by default, normative, except the Introduction and any section 

explicitly labeled as "Informative" or individual paragraphs that start with "Note:”  

The keywords "shall" and "shall not" indicate requirements strictly to be followed in order to 

conform to the document and from which no deviation is permitted. 

The keywords, "should" and "should not" indicate that, among several possibilities, one is 

recommended as particularly suitable, without mentioning or excluding others; or that a certain 

course of action is preferred but not necessarily required; or that (in the negative form) a certain 

possibility or course of action is deprecated but not prohibited.  

The keywords "may" and "need not" indicate courses of action permissible within the limits of 

the document.  

The keyword “reserved” indicates a provision that is not defined at this time, shall not be used, 

and may be defined in the future. The keyword “forbidden” indicates “reserved” and in addition 

indicates that the provision will never be defined in the future. 

A conformant implementation according to this document is one that includes all mandatory 

provisions ("shall") and, if implemented, all recommended provisions ("should") as described. A 

conformant implementation need not implement optional provisions ("may") and need not 

implement them as described. 

Unless otherwise specified, the order of precedence of the types of normative information in this 

document shall be as follows: Normative prose shall be the authoritative definition; Tables shall 

be next; followed by formal languages; then figures; and then any other language forms. 

http://www.videoservicesforum.org/membership/membership.htm
mailto:opsmgr@videoservicesforum.org


 

 10 VSF TR-06-2 
 

 

3 References  
VSF TR-06-1, Reliable Internet Stream Transport (RIST) Protocol Specification – 

Simple Profile 

 

IETF RFC 2784, Generic Routing Encapsulation (GRE) 

 

IETF RFC 2890, Key and Sequence Number Extensions to GRE 

 

IETF RFC 3550, RTP: A Transport Protocol for Real-Time Applications 

 

IETF RFC 3686, Using Advanced Encryption Standard (AES) Counter Mode With 

IPsec Encapsulating Security Payload (ESP) 

 

IETF RFC 5054, Using the Secure Remote Password (SRP) Protocol for TLS 

Authentication 

 

IETF RFC 5216, The EAP-TLS Authentication Protocol 

 

IETF RFC 6347, Datagram Transport Layer Security Version 1.2 

 

IETF RFC 7468, Textual Encodings of PKIX, PKCS, and CMS Structures 

 

IETF RFC 8018,  PKCS #5: Password-Based Cryptography Specification Version 2.1 

 

IETF RFC 8086, GRE-in-UDP Encapsulation 

 

IETF RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format 

 

IETF RFC 8285, A General Mechanism for RTP Header Extensions 

 

IEEE Std 802.1X-2010, Port-Based Network Access Control 

 

SMPTE ST 2022-1:2007, Forward Error Correction for Real-Time Video/Audio 

Transport Over IP Networks 

 

SMPTE ST 2022-2:2007, Unidirectional Transport of Constant Bit Rate MPEG-2 

Transport Streams on IP Networks 

 

J. Carlson, B. Aboba, and H. Haverinen, EAP SRP-SHA1 Authentication Protocol, 

retrieved from https://tools.ietf.org/html/draft-ietf-pppext-eap-srp-03  

 

T. Wu, SRP Protocol Design, retrieved from http://srp.stanford.edu/design.html  

https://tools.ietf.org/html/draft-ietf-pppext-eap-srp-03
http://srp.stanford.edu/design.html


 

 11 VSF TR-06-2 
 

 

4 RIST Profiles (Informative) 
 RIST has multiple operational profiles, corresponding to increasing levels of complexity and 

functionality. Higher profiles include all the features and functionality of the preceding profiles. 

This document defines RIST Main Profile, which adds the following features to VSF TR-06-1 

RIST Simple Profile: 

 Stream multiplexing support 

 Tunneling support 

 Encryption support using DTLS 

 Pre-Shared Key encryption support 

 NULL packet deletion (for bandwidth optimization) 

 High bitrate/high latency operation 

A profile roadmap is included in TR-06-1. 

5 Stream Multiplexing and Tunneling Support 
The objective of stream multiplexing and tunneling is to provide the ability to combine all the 

communication between two RIST devices into a single UDP port, to which encryption can be 

applied. Encryption is provided either by DTLS as described in section 6, or by Pre-Shared Key, 

as described in section 7.  The use of tunneling also simplifies firewall configuration. The 

features provided are:  

RIST devices compliant with this specification shall support all the functions below:  

 Combining the RTP and RTCP flows into a single port, in a manner compliant with 

RIST Simple Profile. 

Optionally, RIST devices compliant with this specification may support the functions below: 

 Combining multiple RIST flows into a single port. 

 Providing support for transporting generic IP traffic into that same socket, in a manner 

similar to a VPN, typically for in-band control of remote devices (e.g., SNMP 

management). 

The functions above shall be achieved using GRE-over-UDP per RFC 8086, with the constraints 

and additions described below. 

 



 

 12 VSF TR-06-2 
 

 

5.1 General Operation 
A tunnel is established between two endpoints. The endpoint that listens for a connection is 

called the server, and the endpoint that initiates the tunnel connection is called the client. 

Operation shall follow RFC 8086, with the additions, changes and exceptions indicated below: 

 The roles of RIST sender and receiver are independent of the roles of server and client. 

The device that starts the tunnel is known as the client. Once the tunnel is established, 

streams may flow in either direction. Tunnel establishment is described in section 5.6. 

 Streams running through the tunnel shall comply with VSF TR-06-1, RIST Simple 

Profile. 

 RIST devices may use arbitrary UDP port numbers for the tunnel. RFC 8086 

recommends the use of port 4754 if the traffic is in the clear, or port 4755 if the traffic is 

encrypted using DTLS, but RIST devices are not constrained by these choices.  

 The server shall listen for GRE packets on a UDP port that has been pre-configured by 

the user.  The server receives packets from the client on this port.  The client may use any 

port number as its source port.  The server shall direct reply/return packets to that source 

port number on the client. 

 RIST devices may use a tunnel to send multiple RTP/RTCP flows. 

 RIST devices may allow the tunnel to be used for other types of traffic, e.g., for in-band 

control. If such a function is provided, it shall be possible for the user to configure what 

types of traffic are allowed in the RIST tunnel, or to completely exclude non-RIST traffic 

from the tunnel. 

 RIST devices shall discard unsupported tunneled packets. Section 5.6.3 allows the use of 

GRE packets for the tunnel keep-alive function; unsupported tunneled packets, even 

though discarded, shall be deemed to be keeping the tunnel alive if present. 

 When transmitting, devices compliant with this specification should set the C 

(Checksum) field in the GRE header to zero to reduce overhead. The S (Sequence 

Number) and K (Key) shall be used as follows: 

o When using a pre-shared key with RIST, as described in section 7, the S field 

shall be set to 1 and a valid sequence number shall be included in the packet. The 

K field shall also be set to 1. The usage of the S field is described in section 7.1. 

o Transmitting devices not using pre-shared key shall set the K field to zero. 

o If the communicating devices support non-RIST traffic in the tunnel, the S field 

should be set to 1 and a valid sequence number should be included in the packet. 

o In all other situations, the use of the S field is optional. 

 When receiving, devices compliant with this specification shall inspect the C, K and S 

bits in order to compute the GRE header size. Receiving devices may or may not actually 

process and verify the Checksum field.  Devices not working in Pre-Shared Key mode 

(section 7) shall not be required to process the Key field.  If the Sequence Number field is 

present (S=1), receiving devices should use it to re-order the tunnel packets.  



 

 13 VSF TR-06-2 
 

 

 RFC 8086 defines bits 4-12 in the GRE header as Reserved0.  This Specification defines 

bits 9-12 as follows (see Figure 1): 

o RV (bits 10-12): this field indicates the RIST Version, as follows: 

 RV = 000: TR-06-2:2020 

 RV = 001: TR-06-2:2021 

 RV = 010: TR-06-2:2022 

o H (bit 9): this field indicates the AES key length for PSK operation, as follows: 

 H = 0: 128-bit AES key 

 H = 1: 256-bit AES key 

 The definition of the H bit shall be as follows: 

o If RV = 000, the H bit shall be set to zero on transmission and ignored on 

reception.  In this case, the PSK key length shall be determined by out-of-band 

means. 

o If RV = 001 or higher, the H bit indicates the PSK key length.  Devices not 

operating in PSK mode shall set the H bit to zero on transmission and ignore it on 

reception. 

 The remaining Reserved0 bits in Figure 1 shall be set to zero on transmission and 

ignored on reception, as per RFC 2784. 

Upon receiving a packet with an RV value not listed above, the device shall process it as follows: 

 If RV=011 or RV=100, the device shall assume that the packet format is backward 

compatible with TR-06-2:2022 and process it according to this Specification. 

 If RV=101, RV=110 or RV=111, the device shall assume that the packet format is 

unknown and discard it. 

A GRE header with no options is depicted in Figure 1 (fields are in network byte order, MSB 

first): 

 

A GRE header with sequence number is depicted in Figure 2: 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|0| |0|0|Reserved0|H| RV  | Ver |         Protocol Type         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 1: GRE header with no options 



 

 14 VSF TR-06-2 
 

 

5.2 Use of the VSF EtherType in GRE Packets 
The Video Services Forum has been assigned the 0xCCE0 EtherType.  In the GRE header, the 

Protocol Type field is set to the EtherType of the protocol being carried.  Senders shall include 

the VSF Packet Header depicted in Figure 3 after the GRE header for packets using the VSF 

EtherType in the Protocol Type field. 

The fields in the VSF Packet Header shall be set as follows: 

 VSF Protocol Type: This field defines the protocol stack for the packet.  It shall be set 

by the sender as follows: 

o 0x0000: RIST Packet, defined by this Specification. 

o 0x0001-0xFFFF: Reserved for future assignment by the VSF. 

 VSF Protocol Subtype: This field defines the packet format.  For RIST Packets (VSF 

Protocol Type set to 0x0000), this field shall be set by the sender as follows: 

o The range 0x0000 to 0x7FFF is assigned to data packets.  The following values 

are defined: 

 0x0000: RIST Main Profile Reduced Overhead Packets, defined in 

Section 5.3.2. 

 0x0001-0x7FFF: Reserved for future use. 

o The range 0x8000 to 0xFFFF is assigned to control packets.  The following values 

are defined: 

 0x8000: RIST Main Profile Keep-Alive Packets, defined in Section 5.6.3. 

 0x8001: RIST Main Profile Future Nonce Announcement Packets, defined 

in Section 7.6. 

 0x8002-0xFFFF: Reserved for future use. 

Senders shall not set RV=000 or RV=001 in packets where Protocol Type=0xCCE0. 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|0| |0|1|Reserved0|H| RV  | Ver |         Protocol Type         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|                      Sequence Number                          | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 2: GRE header with sequence number 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|       VSF Protocol Type       |     VSF Protocol Subtype      | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 3: VSF Packet Header 



 

 15 VSF TR-06-2 
 

 

Figure 4 shows a full packet with the GRE header, the VSF Packet header, and the TR-06-2 

payload. 

5.3 Tunneling Modes 
Two tunneling modes are specified in this document: 

 Full Datagram Mode: This mode shall be supported in all implementations of this 

specification.  In this mode, the GRE payload is a full layer-3 IP packet. All RIST 

devices compliant with Main Profile shall support this mode as a means of stream 

multiplexing. If the RIST device supports encapsulation of non-RIST traffic, this feature 

shall be disabled by default, and shall be enabled only by explicit user intervention. 

 Reduced Overhead Mode: In this mode, a reduced header as defined in section 5.3.2 

shall be used.  Previous versions of this Specification indicated the use of an 

experimental EtherType for Reduced Overhead Packets.  This usage is deprecated, and 

new implementations should use the VSF EtherType. 

5.3.1 Full Datagram Mode 

In this mode, a full IP packet shall be encapsulated as the GRE payload, starting from the IP 

header. The Protocol Type field in the GRE header shall be set to 0x0800, the default EtherType 

for IP. 

5.3.2 Reduced Overhead Mode 

In this mode, the encapsulated packet is assumed to be a UDP packet. The packet payload shall 

start with the subset of the UDP header indicated in Figure 5, denoted as “Reduced UDP 

Header”.  The remainder of the packet payload shall be the full, unchanged payload of the 

original UDP packet.  Fields shall be in network byte order, MSB first. 

Figure 5: Reduced UDP Header 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

:            GRE Header with Protocol Type = 0xCCE0             : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|       VSF Protocol Type       |     VSF Protocol Subtype      | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

:                        TR-06-2 Payload                        : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 4: Full GRE Header with VSF Packet Header 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|        UDP Source Port        |     UDP Destination Port      | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 



 

 16 VSF TR-06-2 
 

 

Figure 6 indicates two options for GRE encapsulation of Reduced Overhead Mode: 

 The Legacy Encapsulation was specified in TR-06-2:2020 and TR-06-2:2021.  It uses the 

experimental EtherType value of 0x88B6.  Usage of this encapsulation is deprecated and 

no longer recommended.  Implementers may consider supporting this encapsulation for 

interoperability reasons. 

 The Recommended Encapsulation uses the VSF EtherType value of 0xCCE0. 

 

The receiving RIST device shall make the following assumptions for an incoming Reduced 

Overhead packet: 

 The payload following the Reduced UDP Header represents the payload of a UDP 

packet. 

 The receiving tunnel endpoint shall assume that the packet is destined for it and sourced 

from the remote tunnel endpoint. 

 The other IP header fields shall be assumed to be the same as the IP packet bearing the 

GRE payload, if relevant. 

 Because the checksum field is not present, receiving RIST devices shall assume that the 

checksum of the encapsulated UDP packet is correct. 

Legacy Encapsulation used in TR-06-2:2020 and TR-06-2:2021 
0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|             GRE Header with Protocol Type=0x88B6              | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|        UDP Source Port        |     UDP Destination Port      | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

:                         UDP Payload                           : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Recommended Encapsulation 
0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|             GRE Header with Protocol Type=0xCCE0              | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   VSF Protocol Type=0x0000    |  VSF Protocol Subtype=0x0000  | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|        UDP Source Port        |     UDP Destination Port      | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

:                         UDP Payload                           : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 6: Reduced Overhead Mode GRE Encapsulation 



 

 17 VSF TR-06-2 
 

 

 The payload size of the encapsulated UDP packet shall be derived from the payload size 

of the received GRE packet. More specifically, the payload size of the encapsulated UDP 

packet shall be assumed to be equal to the payload size of the received UDP packet minus 

the GRE header size (4, 8 or 12 bytes) minus the Reduced UDP Header size (4 bytes) and 

minus the VSF Packet Header size, if present (4 bytes). 

 The source and destination UDP ports for the encapsulated packet shall be the source and 

destination UDP ports from the Reduced UDP Header. 

5.4 Processing of Tunnel Packets at the Receiving End 
The RIST device receiving GRE encapsulated packets shall process them as follows: 

 Reduced Overhead Mode: 

o The receiving device shall assume that the encapsulated packet is destined for it. 

o The receiving device shall process the packet payload in the same way as if it had 

received a UDP packet addressed to it, from the sender of the GRE packet, with 

source and destination UDP ports as specified by the Reduced UDP Header. 

o For gateway devices, received Reduced Overhead streams may be forwarded to 

external devices by a configuration means outside the scope of this Specification. 

 Full Datagram Mode: In this mode the receiving device will extract a layer-3 IP packet 

from the GRE tunnel. This packet shall be known in this document as an “Extracted 

Packet”. 

o The reception of any Extracted Packet from the GRE tunnel shall be deemed 

sufficient for keep-alive purposes, even if the Extracted Packet is discarded. 

o Receiving devices shall accept and process the Extracted Packets, in the same 

manner as if they had been directly received by a local network interface, if all of 

the following conditions are true: 

 The Extracted Packet is a UDP packet. 

 The destination UDP port in the Extracted Packet is for a socket/flow the 

receiving device is currently configured to accept and process. 

 The destination IP address in the Extracted Packet matches an address the 

receiving device is prepared to accept.  This includes multicast addresses 

that the receiving device has been configured to receive, as well as any 

unicast IP addresses deemed acceptable by the receiving device. 

o Receiving devices may discard Extracted Packets that do not match the above 

rules. 

o Receiving devices may choose to check the IP header checksum for the Extracted 

Packet.  If the Extracted Packet is a UDP packet, the receiving device may choose 

to check the UDP checksum (if present). 

o If a receiving device accepts Extracted Packets, the following rules shall apply: 

 Processing shall be disabled by default and shall only enabled by explicit 

user configuration. 



 

 18 VSF TR-06-2 
 

 

 Forwarding of Extracted Packets into the local networks connected to the 

receiving device shall be disabled by default and shall be enabled only by 

explicit user configuration. 

Since different EtherTypes are used for Reduced Overhead and for Full Datagram modes, it is 

possible for a tunnel to contain both types of packets simultaneously. Support for such mixed 

operation is optional. 

5.5 Tunnel-Level Multi-Path Operation 
In some applications, the GRE packets can be sent over multiple physical or logical paths to the 

receiver. This mode of operation is used in the following scenarios: 

 Bonding: the GRE packets are spread over multiple paths to combine them into a higher 

capacity link. 

 Seamless switching: the GRE packets are replicated over multiple paths for redundancy, 

in the same fashion as SMPTE 2022-7. 

Senders using tunnel-level multi-path operation should set S=1 in the GRE header and include 

valid sequence numbers.  Receivers should use the sequence number to re-order the GRE 

packets. 

5.6 Tunnel Establishment 

5.6.1 Introduction (Informative) 

When using an RFC 8086 tunnel, one of the endpoints is the server (listens on some UDP port 

for tunnel packets) and the other endpoint is the client (actively sends RFC 8086 packets to the 

server). The roles of tunnel client and server are independent of the roles of RIST sender and 

receiver. This is further complicated when NAT traversal is required at either end. 

In VSF TR-06-1 RIST Simple Profile, the receiver is the server, and the sender is the client, as 

far as stream transmission is concerned. If the same roles apply for the tunnel (i.e., the RIST 

receiver is the tunnel server, and the RIST sender is the tunnel client), operation is 

straightforward - the RIST sender starts stream transmission at its convenience - the only 

difference is that the packets come out encapsulated in RFC 8086. 

However, if the RIST receiver is the tunnel client and the RIST sender is the tunnel server, there 

is a startup problem because there is no negotiation in RFC 8086, and in RIST Simple Profile the 

receiver does not send anything until it starts receiving from the sender. The same problem exists 

when the device is a gateway and the RIST streams are not active or have not been configured. 

The solution to this issue is to require the tunnel client to send some sort of tunnel-level keep-

alive message. This way, the RIST sender becomes aware that the tunnel is up, learns the IP 

address of the client, and it can start sending at its convenience. 



 

 19 VSF TR-06-2 
 

 

As far as this problem is concerned, an empty message is sufficient. However, adding this 

message presents an opportunity to include additional desirable functionality in RIST.  This 

Specification defines a keep-alive message in sections 5.6.3 and 5.6.4, but allows the use of any 

type of periodic GRE-encapsulated message, as long as the requirements of section 5.6.2 are met. 

5.6.2 Keep-Alive Message Requirements 

The following are the requirements for the keep-alive messages: 

● The tunnel client shall start sending messages to the tunnel server as soon as it is enabled. 

● The tunnel server shall start sending messages to the tunnel client as soon as it receives 

the first message from it. 

● Keep-alive messages shall be sent periodically.  Transmission frequency shall be between 

1 second and 10 seconds.  

● Tunnel timeout should be 60 seconds.  Tunnel timeout shall be declared when the 

endpoint fails to receive any data from the tunnel (either keep-alive messages and/or 

traffic) for the specified amount of time. 

● If a tunnel endpoint is receiving keep-alive messages or traffic from the remote tunnel 

endpoint, the tunnel endpoint shall keep sending keep-alive messages or traffic to the 

remote tunnel endpoint.  If the tunnel endpoint stops receiving keep-alive messages or 

traffic from the remote tunnel endpoint for a period of time equal to the tunnel timeout, 

the tunnel endpoint shall stop sending keep-alive messages and traffic to the remote 

tunnel endpoint.  

● If an endpoint fails to receive either a keep-alive message or traffic on a session after the 

timeout, the endpoint shall consider the session to be terminated and shall release any 

resources associated with the session. 

● At startup, the tunnel client shall send a minimum of 3 and a maximum of 10 back-to-

back keep-alive messages to the tunnel server to get the connection started. 

The requirements of this section shall apply to whatever periodic message is used for the keep-

alive function. 

5.6.3 Keep-Alive Message Format 

Figure 7 shows two options for encapsulating the Keep-Alive message:  

 The Legacy Encapsulation was specified in TR-06-2:2020 and TR-06-2:2021.  It uses the 

experimental EtherType value of 0x88B5.  Usage of this encapsulation is deprecated and 

no longer recommended.  Implementers may consider supporting this encapsulation for 

interoperability reasons. 

 The Recommended Encapsulation uses the VSF EtherType value of 0xCCE0. 

Senders shall set the C bit in the GRE header to zero.  Senders shall set the S and K according to 

Section 5.1. 



 

 20 VSF TR-06-2 
 

 

The Keep-Alive Message is shown Figure 8.  The message fields are indicated in network byte 

order, MSB first. 

 

 

The sender shall set the message fields as follows: 

● 48-bit MAC Address: this field should be set to one of the MAC addresses of the device 

sending the packet. The MAC address is used for identification purposes and shall be 

unique for all devices participating in a RIST Main Profile session. RIST devices 

implemented in virtual machines shall take special care to ensure the uniqueness of this 

field. 

● Capability Flags: these flags shall indicate the enabled capabilities of the device 

transmitting the message, as follows: 

Legacy Encapsulation used in TR-06-2:2020 and TR-06-2:2021 
0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|             GRE Header with Protocol Type=0x88B5              | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

:                      Keep-Alive Message                       : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Recommended Encapsulation 
0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|             GRE Header with Protocol Type=0xCCE0              | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   VSF Protocol Type=0x0000    |  VSF Protocol Subtype=0x8000  | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

:                      Keep-Alive Message                       : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 7: Keep-Alive Message Encapsulation 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                                               | 
|   48-bit MAC Address          +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                               |X|R|B|A|P|E|L|N|D|T|V|J|F|Rsvd1| 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|               Message Payload (JSON format)                   | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 8: Keep-Alive Message 



 

 21 VSF TR-06-2 
 

 

○ X: More capabilities. If this flag is set, it indicates that there are more capabilities 

included in the JSON message. This is reserved for future use. 

○ R: Routing capability. If this flag is set, the device is willing to transmit and 

receive non-RIST traffic. If it is not set, the remote device shall not transmit non-

RIST traffic. Devices operating with R=0 shall discard all non-RIST packets 

received in the tunnel.   Devices operating with R=1 should set the S flag in the 

GRE header and should include a valid sequence number in that header. 

○ B: If this flag is set, device supports Bonding (as specified in RIST Simple 

Profile) 

○ A: If this flag is set, device supports Adaptive Encoding 

○ P: If this flag is set, device supports SMPTE-2022 FEC 

○ E: If this flag is set, device supports seamless redundancy switch as per SMPTE-

2022-7 (already in RIST Simple Profile) 

○ L: If this flag is set, device supports load sharing.  This is reserved for future use.  

○ N: If this flag is set, device supports NULL packet deletion (described in section 

8.3). 

○ D: If this flag is set, this is a Disconnect message (described in section 5.6.5). 

○ T: If this flag is set, this is a Reconnect message (described in section 5.6.6). 

○ V: If this flag is set, device supports Reduced Overhead Mode (described in 

section 5.3.2). 

○ J: If this flag is set, device is capable of sending, receiving and processing JSON 

information (described in section 5.6.4). 

○ F: If this flag is set, the device is capable of on-the-fly PSK passphrase change 

(described in section 7.4). 

● Rsvd1: these bits are reserved for future capabilities. Current implementations shall set 

them to zero on transmission and ignore them on reception. 

As indicated in section 5.6, this Specification allows devices to use any periodic GRE-

encapsulated packet as the keep-alive message.  If a device does not receive periodic keep-alive 

messages that comply with the format described in this section, it shall make the following 

assumptions: 

 The sending device is not capable of sending or receiving JSON information – the J flag 

in Figure 8 is assumed to be zero. 

 The sending device will never issue Disconnect and Reconnect messages (sections 5.6.5 

and 5.6.6) and will ignore such messages from the other side of the tunnel. 

 The information that would otherwise be indicated by the remaining capability flags in 

Figure 8 is unknown. If both sides are manually configured for one or more such 

capabilities, the use of the manually configured capabilities shall be allowed. In the 

absence of manual configuration, the endpoint shall assume that the feature is not 

supported (i.e., the corresponding flag is zero). 



 

 22 VSF TR-06-2 
 

 

 The MAC Address of the remote device is unknown. 

5.6.4 Keep-Alive Message Payload 

The keep-alive message payload shall be in JSON format for extensibility, as defined in 

RFC 8259. Receivers with JSON support shall parse the message and shall discard any 

unsupported/unknown data. The JSON snippet below is an example of the minimum supported 

data set: 

{ 
  "tunnelIP": "10.0.0.2", 

  "remoteIP": "10.0.0.3", 

  "excludedIP": ["192.168.1.0/24", "10.10.10.0/25"], 

  "routing": true, 

  "pskRotation": 600, 

  "vendor": { 
   "implementation": { 
      "version": "2.3.5", 
      "product": "Yellow RIST Machine", 
      "vendorName": "RIST AG, Inc." 
    }, 
    "features": null 
  } 
} 

 

The parameters of the JSON keep-alive message shall be defined as follows: 

● tunnelIP: shall be used to communicate the local tunnel IP address to the remote 

endpoint. It may be either an IPv4 or IPv6 address. The tunnel client may also use the 

values allocateIPv4 or allocateIPv6 to ask the server to allocate a local tunnel IP address 

for its use.  In this case, the server may use the supplied MAC address to ensure that a 

given client gets the same tunnel IP address every time it connects. 

● excludedIP: this optional parameter is a list of IP address ranges that the client is not 

willing to accept.  It shall only be used in client-to-server messages. 

● remoteIP: If the client has requested the server to allocate an IP address for its use, this 

field shall contain the allocated address. If it is present in the client-to-server message, it 

shall be ignored by the server. It shall only be used in server-to-client messages. 

● routing: this optional Boolean parameter shall be used to indicate that the sender of the 

message is or is not willing to accept and route non-stream traffic. If the routing Boolean 

parameter is included, the following shall be implemented:   

-  If the parameter is set to false,  the device shall not allow routing of non-RIST traffic; 

the R flag in the capabilities header shall be ignored.  

-  If the parameter is set to true, then if and only if the R flag is also set to 1, then the 

device will allow routing of non-RIST traffic.  



 

 23 VSF TR-06-2 
 

 

This parameter shall be used to turn off the routing of non-RIST traffic if the client and 

server cannot agree on the client’s IP address.  

● pskRotation: If the tunnel is operating in Pre-Shared Key (PSK) mode, as described in 

section 7, the sender may advertise its key rotation period, expressed in seconds, using 

this optional field. 

● vendor: these optional strings provide information about the device itself: 

○ version: software/firmware version number (arbitrary vendor-defined format). 

○ product: product name (arbitrary vendor-defined format). 

○ vendorName: name of the device vendor (arbitrary vendor-defined format). 

● features: This is a placeholder for extensions of the capability flags. 

5.6.4.1 Example Exchange (Informative) 

Example of a client-to-server message where the client requests that the server allocate an IPv4 

tunnel address: 

{ 

 "tunnelIP": "allocateIPv4", 

 "vendor": { 

   "implementation": { 

     "version": "2.3.5", 

     "product": "Yellow RIST Machine", 

     "vendorName": "RIST AG, Inc." 

   }, 

   "features": null 

 } 

} 

Upon receiving this message, the server will respond as follows: 

{ 

 "tunnelIP": "10.0.0.2",  this is the server’s local IP address 

 "remoteIP": "10.0.0.3",  this is the IP address the server has assigned to the client 

 "vendor": { 

   "implementation": { 

     "version": "2.3.5", 

     "product": "Yellow RIST Machine", 

     "vendorName": "RIST AG, Inc." 

   }, 

   "features": null 

 } 

} 

 

In the above exchange, if the client wanted to declare its IP address instead of asking the server 

to allocate one, it would use this IP address instead of allocateIPv4. In this case, the server’s 

response would not include the remoteIP entry. 



 

 24 VSF TR-06-2 
 

 

It is possible that the client and server cannot agree on a set of IP addresses. This will happen in 

the following situations: 

1. Both server and client want to use specific IP addresses, and the selected values are not 

acceptable to one of the sides. 

2. The client asks the server to allocate an IP address, but sends a list of excluded ranges 

that matches the ranges that that server was planning to use for the client. 

In these cases, routing is not possible. The endpoint that disagrees with the addresses will send a 

JSON message with "routing": false, and from that point on the GRE tunnel described in 

this specification will be used only for stream multiplexing.  In other words, the "routing" 

JSON parameter is used to disable non-RIST traffic between endpoints that are otherwise willing 

to support it but cannot agree on IP address assignment. 

The protocol exchanges in this example are as follows: 

1. Specific IP addresses: 

 The client sends the initial keep-alive message(s) with its desired IP address. 

 If the server finds the address unacceptable, it will send its keep-alive message 

with "routing": false and its own IP address. 

 The server may find the IP address of the client acceptable, but the client may 

decide that the IP address of the server is unacceptable. From that point on, it 

must send "routing": false in its keep-alive messages. 

2. Server-allocated addresses: 

 The client sends the initial keep-alive message with an excludedIP range. 

 The server is unable to allocate an address that satisfies the client’s request. It will 

then send an IP address that may violate the request, and will qualify that with 

"routing": false. 

Note that routing operation does not require JSON support or even IP address negotiation.  

Endpoints may be manually configured with consistent IP addresses (and routing tables if 

appropriate).  In such cases, it is legal to have R=1 without JSON support (J=0). 

5.6.5 Disconnect Message 

Use of the Disconnect Message is optional but recommended. 

Note: Implementers are cautioned that receivers may not make use of this message.  

 

Section 5.6.2 indicates that the tunnel will disconnect on keep-alive message timeout. The keep-

alive message header contains a D bit that may be used to explicitly request a disconnect.  Either 

the client or the server may initiate a disconnect by sending a keep-alive message with D=1. As a 

response, the receiving device should send up to 3 keep-alive messages with D=1 as an 



 

 25 VSF TR-06-2 
 

 

acknowledgement, terminate the tunnel and stop sending further messages.  The device that 

initiated the disconnection shall terminate its side of the tunnel and shall stop sending messages 

as soon as it receives a keep-alive message with D=1.  

All Main Profile RIST devices should implement support for receiving and processing keep-alive 

messages with D=1 as described in this section. A client device receiving a disconnect message 

should wait 5 seconds before attempting to connect again to the same server. 

A RIST device that intends to terminate the connection may explicitly use the Disconnect 

Message or it may simply stop transmitting and let the connection terminate by timeout. 

5.6.6 Reconnect Message 

The keep-alive message header includes the T bit to restart the IP Address negotiation described 

in section 5.6.4. It can be initiated either from the server or from the client. If it is initiated from 

the server, it shall mean “connect again”. The primary purpose of this mechanism is for an 

endpoint to change its tunnel IP address. In a situation where the server is allocating IP addresses 

and reconnection is initiated by the client, it is recommended that the server should allocate a 

different IP address to the client. 

The behavior of devices with respect to the Reconnect Message shall be as follows: 

 The device requesting reconnection shall start sending keep-alive messages with T=1 

 The remote device, upon receiving T=1, shall restart the IP address negotiation, and shall 

send its next message with T=1. 

o If the client started the reconnection, the server shall treat the received message in 

the same fashion as an initial connection request. 

o If the server started the reconnection, the client shall consider the connection 

closed and start it again, transmitting the initial keep-alive message with T=1. 

 The originating device shall respond with T=0, terminating the negotiation. 

 Upon receiving a message with T=0, the remote device shall also set T=0 on its 

messages. 

5.6.7 Source and Destination IP Addresses in Tunneled RIST Packets 

This section specifies the rules for selecting and processing the source and destination IP 

addresses for the GRE-encapsulated IP packets in Full Datagram mode. There are two cases to 

be considered: 

 Case 1: the endpoints have consistent and agreed upon tunnel IP addresses. This can be 

achieved either by JSON negotiation with keep-alive messages, or by manual static 

configuration. In both cases, each endpoint knows the tunnel IP address of the other 

endpoint. 



 

 26 VSF TR-06-2 
 

 

 Case 2: the endpoints have not completed IP address negotiation, either because they 

tried and failed, or because they do not support it. Each endpoint has a tunnel IP address, 

but does not know (or does not accept) the other endpoint tunnel address. 

For Case 1, there are no restrictions on source and destination addresses. Since the networks are 

consistent, users are free to configure whatever addresses they may see fit. 

For Case 2, since the tunnel IP addresses are either not known or not consistent, the following 

rules shall be followed: 

 The destination IP address of the transmitted RIST RTP packets shall be multicast. 

 The RIST Simple Profile rules for multicast shall apply.  (They are repeated here for the 

convenience of the reader, however implementers are encouraged to read the latest 

version of VSF TR-06-1): 

o RTCP packets, both from the RIST sender and from the RIST receiver, shall be 

transmitted to the same multicast address as the RTP flow. 

o RTCP packets, both from the RIST sender and from the RIST receiver, shall be 

transmitted to UDP port P+1, where P is the destination UDP port of the 

corresponding RTP flow. 

 The source IP address of the packets should be set to the transmitting endpoint’s tunnel 

address. 

 When differentiating between streams, a receiver shall use both the multicast destination 

address and the UDP port.  In other words, receivers shall be required to support 

situations where multiple streams use the same UDP destination port and different 

multicast destination addresses. 

Note: Implementers may use simplified configuration interfaces for ease of use.  For example, a 

device that combines the tunnel with the RIST Simple Profile sender (e.g., a multi-channel 

encoder) may only expose a list of UDP ports, one per stream, and use a pre-selected default 

multicast for the tunnel, and a pre-selected tunnel IP address.  Conversely, a combined 

tunnel/RIST Simple Profile receiver (e.g., a multi-channel decoder) may automatically detect the 

multicast and port.  In cases where such pre-selected defaults are used, the device’s user interface 

shall provide some indication of what values are being used for ease of interoperation. 

Main Profile tunnel gateways (i.e., devices that only implement the tunnel and optionally the 

encryption functions and forward the RIST traffic to external RIST devices) may forward the 

multicast unchanged, but should remap the source IP address to avoid issues with Reverse Path 

Forwarding. 

Devices that do not use the keep-alive message defined in this document shall fall into Case 1 if 

they have static configurations on both endpoints or into Case 2 if they do not. 



 

 27 VSF TR-06-2 
 

 

5.6.8 Keep-Alive Message Fragmentation 

Senders shall not fragment IP-level keep-alive message. The keep-alive message plus the GRE 

header plus the DTLS header (if using encryption) plus the UDP/IP headers for the resulting 

packet shall be placed into a single MTU. If the sender of the keep-alive message needs to send a 

JSON message that does not fit into a single packet, the JSON message shall be broken into 

multiple, legal, separate JSON messages, each with a subset of the data. 

6 DTLS Support 
RIST senders and receivers may use DTLS version 1.2 to secure their communication and 

authenticate the endpoints. RIST devices offering DTLS support shall implement the DTLS 

protocol according to the recommendations of this section. Implementations shall follow 

RFC 6347 with the additional restrictions described in this document. 

RIST devices using DTLS shall implement tunneling as described earlier in this document. 

6.1 Session Establishment 
DTLS sessions shall be established as follows: 

 There shall be one single DTLS session carrying the RFC 8086 tunnel packets described 

earlier in this document. 

 Once negotiation is complete, the RIST sender shall use RIST Simple Profile as per 

VSF TR-06-1 over the RFC 8086 tunnel, as described in Section 5. 

Note: The roles of DTLS Server and Client are independent of the roles of RIST Sender and 

Receiver 

Once the session is established, the final tunneled and encrypted packet size should not exceed 

the path MTU.  

 

Note: For RIST Simple Profile flows using transport streams over Ethernet, this is guaranteed 

because there are no more than seven transport packets per RTP packet, which will leave enough 

space for the additional tunnel headers. 

6.2 Supported DTLS Cipher Suites 
The following cipher suites shall be supported by all RIST devices implementing DTLS: 

 

 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 

 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 

 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 

 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 

 TLS_RSA_WITH_NULL_SHA256 

 

RIST devices shall provide a means for the user to disable individual cipher suites to match their 

local policies.  

 



 

 28 VSF TR-06-2 
 

 

Note:  It is understood that disabling individual ciphers may prevent two RIST devices from 

establishing communication, if there is no common cipher enabled. 

 

RIST devices may include other cipher suites specified in DTLS in their implementations. 

6.3 Certificate Configuration 

 The DTLS server should be configured with a certificate file – either issued by a 

certificate authority, or a self-signed one. There is no limitation to the certificate type, as 

long as it is readable by the DTLS library. 

 The DTLS client may validate the authenticity of the certificate and may perform 

hostname validation. If offered, this shall be a user-configurable option. 

 The DTLS client should be configured with a client-side certificate. This can be done 

using username/password. 

 The DTLS server may validate the client certificate. If offered, this shall be a user-

configurable option, 

 Both client and server should use a certified list of CAs. This file may be taken 

dynamically from the following link:  

https://hg.mozilla.org/releases/mozilla-

beta/file/tip/security/nss/lib/ckfw/builtins/certdata.txt 

 

If offered, the use of a certified list of CAs shall be a user-configurable option. 

 When using self-signed certificates, it is up to the two end points to arrange exchange of 

the custom proprietary CA used to create such certificates. 

6.4 TLS-SRP Support 
The TLS-SRP protocol, as described in RFC 5054, is used to securely provide 

username/password authentication between devices, as an alternative to using certificates. RIST 

devices may implement TLS-SRP as an authentication method. If they do so, the implementation 

shall follow RFC 5054, with the following modifications and restrictions: 

 RIST devices implementing TLS-SRP shall support the following cipher suites: 

o TLS_SRP_SHA_WITH_AES_128_CBC_SHA 

o TLS_SRP_SHA_WITH_AES_256_CBC_SHA 

 RIST devices implementing TLS-SRP may additionally support any of the other cipher 

suites listed in RFC 5054 section 2.7. 

 RIST servers implementing TLS-SRP shall be configured with a certificate file. This 

certificate file may be self-signed. RIST clients with TLS-SRP support may safely ignore 

the certificate expiration date without compromising security. 

 In order to make TLS-SRP more secure, RIST servers should implement the following 

policies: 

o For a given server, user names should be unique across accounts. 

https://hg.mozilla.org/releases/mozilla-beta/file/tip/security/nss/lib/ckfw/builtins/certdata.txt
https://hg.mozilla.org/releases/mozilla-beta/file/tip/security/nss/lib/ckfw/builtins/certdata.txt


 

 29 VSF TR-06-2 
 

 

o Servers should limit the rate of authentication attempts from a particular IP 

address in order to reduce the risk of brute-force password attacks. 

o Servers should have reasonable password strength policies in order to reduce the 

risk of brute-force password attacks. 

7 Pre-Shared Key Encryption Support 
RIST senders and receivers may use Pre-Shared Key Encryption to secure their communication 

and authenticate endpoints. When offering PSK encryption, the devices shall implement the 

protocol according to the recommendations of this section. The GRE header structures described 

in section 5.1 of this document contain the information used to generate and rotate keys and 

initialization vectors (IV). With these keys and IV, RIST devices shall encrypt/decrypt the GRE 

payload using AES-128/256-CTR. The PSK mechanism described below may be used in either 

Full Datagram or Reduced Overhead modes as specified in section 5.2 of this document.  The 

PSK mechanism shall apply to the payload of the GRE packet – the GRE header shall be 

transmitted in the clear. 

7.1 GRE Header with K Field Turned On 
Figure 9 shows the GRE header, as pictured in section 5.1 of this document with the optional 

field K included. Fields are in network byte order, MSB first. 

Figure 9: GRE header with Key/Nonce 

 

7.2 Sequence and Nonce 
● When transmitting, devices compliant with this specification shall set the Key field to a 

random, non-zero nonce. When a non-zero key is detected, the PSK option shall be 

enabled.  

● The entire payload of the GRE packet, not including the GRE header, shall be encrypted 

between all the endpoints of the tunnel using an AES key derived from the Key field plus 

a pre-shared passphrase.  The AES key length shall be signaled in the H bit in the header, 

as described in Section 5. 

● When the sender enables the PSK option by setting the non-zero K field, it shall also set 

the S (sequence number). The 128-bit initialization vector (IV) for the encryption 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|0| |1|1|Reserved0|H| RV  | Ver |         Protocol Type         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|                           Key/Nonce                           | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|                        Sequence Number                        | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 



 

 30 VSF TR-06-2 
 

 

operation shall be derived by using the 32-bit Sequence Number field as its most 

significant four bytes, followed by 12 bytes of zeros.  This 128-bit quantity is the counter 

that generates the key stream. The process is illustrated in Figure 10, in network byte 

order. 

 VSF TR-06-2:2020 defined a different arrangement for the IV derivation from the 

Sequence Number, whereby the 32-bit Sequence Number represented the LSB of the 

128-bit IV.  This arrangement is insecure and is not interoperable with what is defined in 

this Specification.  Receivers can inspect the RV field in the GRE header to determine the 

sender is using the insecure version, which will have RV=000.  Receivers compliant with 

this Specification shall operate as follows: 

○ If the receiver allows interoperation with insecure implementations with RV=000, 

such operation shall be disabled by default.  It shall only be enabled by explicit 

operator intervention. 

○ If the receiver is interoperating with an insecure implementation, it should alarm 

or notify the operator of this condition. 

○ If the receiver does not allow interoperation with insecure implementations and 

detects that the incoming packets are insecure, it should alarm or notify the 

operator of this condition. 

● A new nonce shall be generated by the sender at least every time the sequence 

counter/number of the GRE packet wraps to zero. This ensures that the same IV + Key 

combination is never reused. The sender may rotate the key more often than that. 

● The receiver shall inspect the Nonce field for every received packet, and shall re-generate 

the key any time it changes.  If RV=001 or higher, the AES key size shall be determined 

by the H bit in the GRE header. 

7.3 AES Encryption Key and Sequences 
● AES Encryption Key and Sequences shall be used.  The payload shall be encrypted and 

decrypted using the Advanced Encryption Standard (AES) and Counter mode (CTR) as 

 

 
Figure 10: IV Generation 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|0| |1|1|Reserved0|H| RV  | Ver |         Protocol Type         |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                           Key/Nonce                           |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                        Sequence Number                        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

IV

Set to 0

IV MSB IV LSB



 

 31 VSF TR-06-2 
 

 

described in RFC 3686 section 2.1, using a 128/256-bit key derived through PBKDF2 as 

described in RFC 8018 section 5.2.   

● As per RFC 8018, a password is considered to be an octet string of arbitrary length whose 

interpretation as a text string is unspecified.  In the interest of interoperability, however, it 

is recommended that applications follow some common text encoding rules. ASCII and 

UTF-8 are two possibilities.  Note that octet strings are not required to have null 

terminators.  If such terminators are desired, implementations shall explicitly include 

them by mutual agreement. 

● The PBKDF2 function shall default to SHA-256 as the hashing algorithm, with 1,024 

iterations. 

● PSK implementations may offer other hashing algorithms as per RFC 8018, and other 

values of the number of iterations. If such options are offered, they shall be enabled by 

explicit out-of-band configuration for all participants.  Note that the SHA-1 hashing 

function is insecure and should be avoided. 

● The key and IV used for both encryption and decryption are described in section 7.1 of 

this document. The PBKDF2 function shall use the nonce, transmitted by the sender in 

the GRE Key field, as salt to generate the actual key. 

 

Note: Annex B presents a numerical example of the key generation algorithm described in 

this section. 

 

Note: The resulting generated key is valid for up to 232 packets. It is therefore safe to use the 

full 32-bit GRE sequence number as IV for the AES operations on single packets. Since the AES 

key changes continuously, there is no risk of reusing the same IV within the encrypted flow. 

 

Note: This algorithm does not provide origin authentication. Therefore, it is susceptible to 

replay and data injection attacks. However, this risk is mitigated because duplicate and out of 

order packets are handled properly by the GRE receiver and/or by the RIST protocol, without 

adverse effects to the resulting decrypted output stream. 

7.4 On-The-Fly Passphrase Change 
On-The-Fly Passphrase Change capability is optional. 

In some one-to-many situations, it may become necessary to de-authorize a subset of the 

receivers. This section describes an optional mechanism to change the passphrase on-the-fly with 

no service interruption for the receivers which remain authorized. The process is as follows: 

 A new passphrase is distributed through out-of-band means to the receivers that are to 

remain authorized. 

 This passphrase is loaded in all the relevant receivers, but remains inactive. 



 

 32 VSF TR-06-2 
 

 

 Once all the relevant receivers are configured with the new passphrase, the sender 

switches to a key generated by this new passphrase. This change is signaled in the GRE 

packets. 

If On-The-Fly Passphrase Change capability is implemented, the GRE header shall contain one 

bit, denoted by B, which identifies the passphrase to be used. The passphrase selected by B=0 

shall be denoted as the “even passphrase”, and the passphrase selected by B=1 shall be denoted 

as the “odd passphrase”. Bit B shall be the MSB of the Nonce field, as indicated in Figure 11. 

 

Figure 11: GRE Header with Odd/Even Bit B in the Nonce 

Operation shall be as follows: 

 All receivers shall use the full 32-bit Nonce field as the Nonce value for key generation. 

 Receivers implementing support for odd/even passphrases shall initialize both 

passphrases to the same value. This ensures compatibility with senders that do not 

support different odd/even passphrases. 

 Senders implementing support for odd/even passphrases shall initialize both passphrases 

to the same value, and may use any value for the Nonce. 

 Passphrase changes shall occur as follows: 

o The sender and the receivers who should remain authorized are configured with 

the new passphrase. 

o The new passphrase shall be associated with the value of B that is not currently in 

use. For example, if at configuration time, B=1, then the new passphrase will be 

associated with B=0. 

o The sender switches to the new passphrase by manual user intervention or other 

out-of-band means. At this time, the sender shall generate a new Nonce with the 

inverted value of B. In the example above, the new Nonce will be set to B=0. 

o The Nonce change will trigger a key recalculation at the receivers. Receivers 

supporting odd/even passphrases shall use the new passphrase. 

o From that point on, if the sender decides to rotate the key, the new Nonce values 

shall have the same value of B. 

o This process can be repeated at a later point in time if a new passphrase change is 

required. 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|0| |1|1|Reserved0|H| RV  | Ver |         Protocol Type         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|B|                         Key/Nonce                           | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|                        Sequence Number                        | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 



 

 33 VSF TR-06-2 
 

 

7.5 PSK Authentication using EAP SRP 
TR-06-2:2020 defined a PSK authentication method based on TLS-SRP.  This method was 

deprecated in TR-06-2:2021, and implementation of this method is not recommended.  Starting 

with TR-06-2:2021, a new optional PSK authentication method is defined.  Devices may use the 

RV field in the header to determine which method is in use. 

The PSK authentication method shall follow the protocol described in Annex D , using EAPoL 

messages encapsulated in GRE using EtherType 0x888E as shown in Figure 12. 

The EAP handshake data packets transmitted over the GRE tunnel shall not be encrypted with 

PSK encryption. 

Once the peer has been authenticated, this authentication state should be cached for the duration 

of the session.  The details of this process are left to the discretion of the implementer. 

7.6 PSK Future Nonce Announcement Message 
The PSK Future Nonce Announcement Message may be used by a sender to inform the receiver 

of the next Nonce value the sender intends to use.  If a sender makes use of the PSK Future 

Nonce Announcement Message, the sender shall employ the message as follows: 

 Senders shall transmit the PSK Future Nonce Announcement Message prior to a change 

in Nonce.  The period between the transmission of this message and the Nonce change 

shall be no less than one second.  

 Senders may transmit this message multiple times to guarantee delivery. 

 After sending a message with a given Nonce value, senders shall not send a Future Nonce 

Announcement Message with a new Nonce value until the announced Nonce is in use for 

encryption. 

The format for the PSK Future Nonce Announcement Message is shown in Figure 13. 

 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|             GRE Header with Protocol Type=0x888E              | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

:         PSK Authentication Message Defined in Annex D         : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 12: Encapsulation of PSK Authentication Messages 



 

 34 VSF TR-06-2 
 

 

Senders shall set the Future PSK Nonce field in Figure 13 to the next Nonce to be used in PSK 

operation. 

NOTE: In PSK mode, the receiving device needs to re-compute the AES decryption key from the 

passphrase when the Nonce changes.  This operation is CPU-intensive, and it can take a 

significant amount of time to complete.  This can become an issue in high bit rate situations, 

since packets with the new Nonce will have to wait for the new key to be computed, causing a 

delay.  In such cases, senders can use the PSK Future Nonce Announcement Message to inform 

the receiving node of the next Nonce value, so it can pre-compute and cache the AES key.   

8 NULL Packet Deletion and High Bitrate Operation 
This section describes an optional RTP header extension to support NULL Packet Deletion and 

High Bitrate operation. 

8.1 NULL Packet Deletion (Informative) 
One of the most common applications of RIST is to transmit MPEG Transport Streams. Typical 

MPEG Transport Streams contain 3 to 5% NULL packets.  These packets convey no 

information. However, such packets are included for stream timing purposes and cannot simply 

be discarded.  

The bandwidth used by NULL packets can be saved by transmitting some sort of marker instead 

of the packet. In this case, the receiving device can re-insert the NULL packets in the same 

position, thus keeping the stream timing intact. 

RIST achieves this function by using a bit field on an extension header to indicate the location of 

the NULL packets. A typical RTP packet will have up to seven transport packets. If, for 

example, three of these seven packets are NULL packets in positions 1, 2 and 6 in the payload, 

the RIST sender will transmit a shorter RTP packet with just four transport packets, and a 

bitmask with the value 1100010, indicating where NULL packets will need to be inserted in this 

group of transport packets. The receiver will infer that the original RTP payload had seven 

transport packets (since it received four transport packets plus three flags for the deleted NULL 

packets), and the locations of the NULL packets themselves. 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|0| |0|0|Reserved0|H| RV  | Ver |     Protocol Type=0xCCE0      | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   VSF Protocol Type=0x0000    |  VSF Protocol Subtype=0x8001  | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|                        Future PSK Nonce                       | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 13: Future PSK Nonce Message 



 

 35 VSF TR-06-2 
 

 

8.2 High Bitrate and/or High Latency Operation (Informative) 
The RTP sequence number is only 16 bits, which means it wraps around every 65,536 packets. If 

the RIST link is carrying a 100 Mb/s transport stream, with the usual seven transport packets per 

RTP payload, the RTP sequence number will wrap around every 6.9 seconds. When using ARQ 

and allowing for the recommended 7 retries, this means that the maximum supportable round-trip 

delay is around one second. This is a significant limitation, which gets even worse as the bit rates 

go up. Therefore, the sequence number must be extended to support this operation, ideally to 32 

bits.  The method for extending the sequence number is described in section 8.3 below. 

8.3 RTP Header Extension to Support NULL Packet Deletion and Extended 

Sequence Numbers 
Both NULL Packet Deletion and RTP Sequence Number Extension shall be accomplished using 

an RTP Header Extension, as per RFC 3550 section 5.3.1. For convenience, the generic 

RFC 3550 RTP Header Extension is show in Figure 14 below. 

Figure 14: Generic RTP Header Extension (from RFC 3550) 

 

The RTP Header Extension for RIST Main Profile shall be implemented as shown in Figure 15. 

Fields shall be in network byte order, MSB first. 

Figure 15: RTP Header Extension for RIST Main Profile 

The bits in the RTP Header Extension for RIST Main Profile shall be implemented as detailed 

below: 

● Header Extension Identifier: This is the 16-bit field denoted by “defined by profile” in 

Figure 14. For RIST Main Profile, this field shall have the value 0x5249, corresponding 

to the ASCII codes for “RI”. 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|      defined by profile       |           length              | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|                        header extension                       | 

|                             ....                              | 

 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|    0x52 (R)   |    0x49 (I)   |          Length=1             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|N|E|Size |0 0 0|T| NPD bits    |   Sequence Number Extension   | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 



 

 36 VSF TR-06-2 
 

 

● Length: as required by RFC 3550, this is the length of the header extension in 32-bit 

words, excluding the four-octet extension header. For RIST Main Profile, Length shall be 

set to 1. 

● N: Shall be set to 1 if Null Packet Deletion is in use. If N=1, the following bits are valid: 

○ Size: This is an optional 3-bit field that indicates how many transport packets 

were in the original RTP packet. If used, senders shall set this field to the number 

of Transport Packets in the original RTP packet.  Senders shall set this field to 

000 to indicate that the payload size is to be derived from the NPD bits and the 

size of the received payload. 

○ T: Transport packet size flag. Senders shall set this field to 0 to indicate 188-byte 

packets, or shall set this field to 1 to indicate 204-byte packets. 

○ NPD bits: Each bit, when set, indicates that a NULL packet has been removed 

from the corresponding position. In this field, MSB corresponds to the first 

transport packet in the payload. If the original payload has less than 7 transport 

packets, the trailing bits that do not correspond to actual packets shall be set to 

zero. 

If the N bit is set to 0, the content of the Size, T, and NPD bits is undefined and shall be 

ignored by the receiver. 

● E: Set to 1 if Sequence Number Extension is in use.  If E=1, the following field is valid: 

○ Sequence Number Extension: this is a 16-bit RTP sequence number extension, 

in network byte order (big-endian). A 32-bit sequence number is created by using 

the 16-bit RTP sequence number as the LSB and this field as the MSB. 

If the E bit is set to 0, the content of the Sequence Number Extension field is undefined 

and shall be ignored by the receiver. 

 

A sender that only implements NULL packet deletion may omit the RTP extension header for 

RTP payloads not containing NULL packets.  More specifically, a header where E=0, N=1, and 

NPD=0 may be omitted. 

8.4 NACK Packet Support for Extended Sequence Numbers 
The NACK packets defined in section 5.3 of VSF TR-06-1, RIST Simple Profile use 16-bit 

sequence numbers.  An extension to NACK packets is defined in this section to support 

Extended Sequence Numbers. 

This document defines a new RTCP packet.  This new packet, denoted as EXTSEQ, conveys the 

higher 16 bits of the sequence number for the following NACK packet.  

When EXTSEQ packets are in use, the RTCP compound packet stack shall be as follows:  RR, 

CNAME, EXTSEQ and NACK. The full 32-bit sequence number for each entry in the NACK 

packet shall be built by pre-pending the 16 bits carried in the EXTSEQ packet with the 16-bit 

sequence number in the NACK packet.  For Bitmask-based retransmission requests, the 16-bit 



 

 37 VSF TR-06-2 
 

 

sequence number in the NACK packet is carried in the Packet ID (PID) field of the FCI.  For 

Range-based retransmission requests, the 16-bit sequence number in the NACK packet is carried 

in the Missing Packet Sequence Start field. 

If the RIST receiver needs to send NACKs for packets that have different high-order extension 

values, these shall be sent as different NACK request packets and shall be separated with a new 

EXTSEQ packet. The compound RTCP packet will then become RR, CNAME, EXTSEQ, 

NACK, EXTSEQ, NACK. The RIST receiver may also break this message into two RTCP 

compound packets, one for each value of EXTSEQ. 

The EXTSEQ RTCP packet shall be implemented as an Application-Defined packet, using 

“RIST” as the name and a subtype of “1”, as indicated in Figure 16. Fields are in network byte 

order, MSB first. 

Figure 16: RIST EXTSEQ RTCP Packet 

Where: 

SSRC of media source: 32 bits 

The synchronization source identifier of the media source that this feedback 

request is related to. As indicated in VSF TR-06-01, the LSB of the SSRC is used 

to differentiate between original packets and retransmitted packets. The RIST 

receiver may use either value in the request packet. 

Sequence Number Extension: 16 bits 

MSB for all the NACK starting sequence numbers that follow this RTCP packet, 

in network byte order (big endian). 

8.5 NULL Packet Deletion Example (Informative) 
The NULL Packet Deletion technique described in this document supports RTP payloads of less 

than seven transport packets.  The actual number of transport packets in the RTP payload can be 

determined by adding the number of packets received in the payload to the number of bits set in 

the NPD field. The suggested processing of the NPD field is as follows: 

   0                   1                   2                   3   

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

   |V=2|0|Subtype=1|   PT=APP=204  |           length=3            | 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

   |                  SSRC of media source                         | 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

   |    0x52 (R)   |    0x49 (I)   |    0x53 (S)   |    0x54 (T)   | 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

   |   Sequence Number Extension   |   reserved=0                  | 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 



 

 38 VSF TR-06-2 
 

 

 Process the NPD field from MSB to LSB 

 For each bit in the NPD field: 

o If the bit is 1, output a NULL packet 

o If the bit is 0, output the next transport packet from the payload 

 Stop when either one of the following conditions are true: 

o All the seven bits in the NPD field have been processed 

or 

o The current bit in the NPD field is 0 but there are no more transport packets in the 

payload 

Note that it is possible to construct packets that have an invalid combination of NPD bits and 

payload packets. Such invalid packets can be classified into two types: 

1. Packets whereby the sum of the NPD bits set to one plus the received payload transport 

packets is more than seven (i.e., too many packets). 

or 

2. Packets whereby there is at least one NPD bit set to one, and the number of NPD zero 

bits in more significant positions than the lowest significant NPD bit set to one is more 

than the number of received payload packets (i.e., not enough packets).  For example, if 

the lowest significant NPD bit set to one is bit 4, this number will be the number of NPD 

bits set to zero in bit positions 5 and higher. 

The receiver behavior in such error situations is left to the discretion of the implementer. In such 

cases, receivers should give priority to transmitting the actual payload transport packets. The 

receiver may use the Size field in the header if coded as an additional indicator. If there is a 

mismatch between the Size field and the payload size computed from the NPD bits plus the 

number of received transport packets, it is recommended to use the latter. 

It is also possible to have a mismatch between the T bit (which selects 188/204 packet size) and 

the payload. In such cases, it is recommended that the payload size take precedence. The T bit is 

only essential for payloads composed exclusively of NULL packets. 

The following is an example of processing a set of variable-size RTP payloads. Assume that the 

following set of packets are to be transported: 

 An RTP datagram with 7 TS packets where packets 1, 2 and 7 are NULLs. 

 An RTP datagram with 3 TS packets where packets 1 and 3 are NULLs. 

 An RTP datagram with 5 TS packets where all the packets are NULLs. 

 An RTP datagram with 4 TS packets where packets 3 and 4 are NULLs. 

Using NULL Packet Deletion, the corresponding RTP packets are: 

 An RTP datagram with NPD=1100001 and 4 TS packets in the payload 



 

 39 VSF TR-06-2 
 

 

 An RTP datagram with NPD=1010000 and 1 TS packet in the payload 

 An RTP datagram with NPD=1111100 and no (zero) TS packets in the payload 

 An RTP datagram with NPD=0011000 and 2 TS packets in the payload 

 

The receiving device processes these RTP datagrams as follows: 

 NPD=1100001 shows 3 NULL packets, and there are 4 packets in the payload. Therefore, 

this will be a 7-TS datagram. The locations of the NULLs are positions 1, 2 and 7. 

 NPD=1010000 shows 2 NULL packets, and there is one packet in the payload. Therefore, 

this will be a 3-TS datagram. Based on this determination, only the first 3 bits of the NPD 

are processed, and the resulting RTP datagram will contain 3 TS packets with NULLs in 

positions 1 and 3, and the payload packet in position 2. 

 NPD=1111100 shows 5 NULL packets, and there are none in the payload. Therefore, this 

will be a 5-TS datagram. Based on this, the resulting RTP datagram will have 5 NULL 

packets. 

 NPD=0011000 shows 2 NULL packets, and there are two more in the payload. 

Therefore, this will be a 4-TS datagram. NPD indicates that the two payload packets are 

transmitted first, followed by two NULL packets. 

8.6 Combining NULL Packet Deletion and Sequence Number Extension with 

SMPTE-2022-1 FEC 
The extensions described in this section may be combined with SMPTE-2022-1 FEC, as 

described below. In all cases, the RTP stream containing the media shall be transmitted 

unmodified in accordance with the previous sections of this document.  

 

Note: The use of an extension header is not compatible with SMPTE-2022-2 operation. 

8.6.1 Sequence Number Extension 

If Sequence Number Extension is in use, the SNBase ext bits field in the FEC header described 

in section 8.4 of SMPTE-2022-1 shall be set to the lower 8 bits of the Sequence Number 

Extension, as indicated in Figure 17. 

Figure 17: FEC Header (from SMPTE-2022-1) 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|       SNBase low bits         |         Length Recovery       | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|E| PT recovery |                     Mask                      | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|                          TS recovery                          | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|N|D|type |index|     Offset    |       NA      |SNBase ext bits| 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 



 

 40 VSF TR-06-2 
 

 

8.6.2 NULL Packet Deletion 

If NULL Packet Deletion is in use, the order of operations at the sender shall be as follows: 

 The data_bytes (content) of any NULL packets in the payload shall be replaced by 0xFF 

for the purposes of FEC computation. 

 The continuity_counter, transport_error_indicator and transport_priority fields of 

any NULL packets in the payload shall be replaced by zero for the purposes of FEC 

computation. 

 FEC packets shall be computed before NULL Packet Deletion, using the modified NULL 

packets as above. 

 The FEC XOR operation shall only include the payload and shall not include the 

extension header described in this document. 

 NULL Packet Deletion shall be performed after the FEC computation and before the 

packets are transmitted. 

At the receiving side, NULL packets shall be re-inserted back into the RTP payload, with 

data_bytes (content) set to 0xFF, continuity_counter, transport_error_indicator and 

transport_priority set to zero, before the FEC computation happens. 

9 Compatibility between RIST Main Profile and Simple Profile Devices 
RIST Main Profile adds several features to Simple Profile, but the underlying transport 

mechanism is still Simple Profile. Therefore, RIST Main Profile devices shall support operation 

in Simple Profile mode. 

In RIST Simple Profile, the sender is always the client, and the receiver is always the server. 

Stream transmission is always initiated by the sender. If the sender is a RIST Main Profile 

device, the selection between RIST Main Profile and RIST Simple Profile shall be manually 

configured. 

Note: For a RIST Main Profile receiver operating as a server, the following profile mismatch 

situations can happen: 

 Case 1: the receiver is configured for Simple Profile (and thus listening on ports P and 

P+1) and receives a Main Profile keep-alive message (or a DTLS connection) on either P 

or P+1. 

 Case 2: the receiver is configured for Main Profile (and thus listening on a single port P) 

and receives either RTP or RTCP packets on that port. 

For either case, the receiver can discard the packets and it is recommended that it provide the 

user with some indication of this fact. Alternatively, receivers can operate as follows: 



 

 41 VSF TR-06-2 
 

 

 For Case 1, the receiver can distinguish between the Simple Profile packets and the Main 

Profile packets, so it could automatically go into Main Profile mode and complete the 

negotiation. 

 For Case 2, the receiver can try to operate in Simple Profile mode. This might or might 

not be possible depending on the configuration of the firewalls upstream of the receiver. 

10 Compatibility with RIST Main Profile Devices Implementing 

TR-06-2:2021 and Earlier Versions (Informative) 
This Specification defines new GRE encapsulation methods using the VSF EtherType in the 

Protocol Type field.  Devices compliant with the 2021 and earlier versions of this TR are 

unaware of this EtherType and are likely to discard these packets.  Moreover, the behavior of 

such implementations when receiving packets with unknown RV types is undefined. 

On reception, a device implementing this Specification is able identify packets compliant with 

the 2021 and earlier versions and seamlessly process them, if desired. 

On transmission, the algorithm described below is suggested for transparent communication.  In 

the description, the term “new device” refers to a device compliant with this version of the 

Specification, and “legacy EtherTypes” refer to the EtherTypes used in the 2021 and earlier 

versions. 

1. The new device starts the communication by sending traffic with RV=000 or RV=001 

and the corresponding legacy EtherTypes.  The new device will also send copies of 

whatever message it is using for the Keep-Alive function with RV=010 and the 

corresponding format. 

2. If the new device receives any traffic with RV=010 and/or the VSF EtherType, it 

switches its transmission to the VSF EtherType and RV=010 and stops sending traffic 

with RV=000 or RV=001. 

3. If the new device does not receive any traffic with RV=010 and/or the VSF EtherType, it 

stops sending the new version Keep-Alive packets after a timeout. 

 

Implementers are advised to carefully consider the amount of network traffic their devices 

generate when using this method, so as not to overload the network.  If a device is relying on a 

data stream for the Keep-Alive function, it is not advisable to replicate that stream. 

This algorithm is only applicable to point-to-point communication.  If a sender is transmitting a 

multicast to a set of receivers (which can change dynamically over time), the only reasonable 

option is manual configuration.  Implementers are advised to always offer a manual 

configuration option. 

  



 

 42 VSF TR-06-2 
 

 

Annex A  Certificate Management (Informative) 
This Annex describes several options for managing client and server certificates for devices 

using RIST Main Profile with DTLS encryption. 

A.1 Certificate Processing 
DTLS includes the option of supporting both server and client certificates for authentication.  

Processing of a certificate includes the following operations on the device that is checking the 

certificate: 

 Has the remote site presented a certificate? 

 If a certificate is presented, is this certificate signed by a Certificate Authority (CA) or 

CA chain that is trusted by the device checking it? 

  If the certificate is signed by a CA trusted by the device, is the remote side allowed to 

connect to the device checking the certificate? 

The processing of certificates is independent of which device is the server and which device is 

the client.  Each device will do its own processing and decide, independently, whether it is 

willing to continue with the connection. 

The final responsibility for defining certificate processing policies rests with the end-user of the 

RIST system.  Implementers are encouraged to provide as much flexibility as possible, to not 

limit the options available to end users. 

A.2 Discussion of Certificate Authorities (CA) 
A certificate is normally signed by a Certificate Authority (CA).  There are several public, 

trusted CAs available on the Internet.  Web sites that need to guarantee their identity, such as 

those from banks, use certificates signed by a public CA.  On the other hand, anybody can create 

a CA and use that to sign certificates.  One typical example of using a “private” CA is VPN 

servers – they typically act as their own CA and will only accept certificates signed by their 

private CA. 

When a device is checking a certificate, it needs to decide whether it trusts the CA who signed it.  

Implementers are encouraged to provide the following options to their users: 

 Accept certificates signed by one of the known public CAs.  This may be applicable for 

servers with fixed IP addresses or host names. 

 If the device operates as a server, provide the option for it to become its own CA and sign 

all the certificates, as it is typically done with VPN servers. 

 Provide the option for the user to employ an external CA independent of the device. More 

specifically, the user should be able to configure the device to use an arbitrary CA. 

In the remainder of this section, it is assumed that one of the previous options for CA selection is 

in use, and, during the certificate exchange, the CA is deemed acceptable by the device checking 

the certificate. 



 

 43 VSF TR-06-2 
 

 

A.3 Remote Certificate Processing at the Local RIST Device 
Implementers are encouraged to provide the following options to end-users regarding the 

decision to accept or reject certificates in RIST devices: 

 Accept all certificates, regardless of CA (for testing).  If the device is a server, this means 

that any device can connect to it; if the device is a client, it means that connections with 

any server will succeed. It is strongly suggested that this option be disabled by default, 

and that the device be in alarm mode for as long as this option is enabled. 

 Accept all certificates that have been signed by one or more configured CAs.  The user 

may have their own CA (either integrated with the server or separate from it), and only 

certificates signed by this private CA will be accepted.  Alternatively, the device may be 

configured to accept certificates signed by public CAs.  This provides a very basic level 

of authentication without too much configuration burden.  Implementers should consider 

making this option the default to ease initial setup. 

o If this option is provided, implementers are encouraged to provide the means to 

create a blocked list in the device – in other words, “accept all certificates signed 

by this CA except the ones in this list”.  This addresses the case where a remote 

device is no longer trusted. 

 Provide a list of acceptable certificates, and only devices presenting certificates in that list 

are allowed to connect.  Connections from remote devices presenting certificates signed 

by the acceptable CA but not this list will be rejected.  If the local device is a server, this 

will be a list of allowed clients; if the local device is a client, this will be a list of the 

servers it is allowed to connect to.  If a remote device is no longer trusted, its certificate 

can be removed from the list. 

Note that certificates may be encrypted.  Support for encrypted certificates is optional. 

A.4 Notes on Blocked Lists and Accepted Lists 
To implement either an accepted list or a blocked list, the device needs to use one of the 

certificate fields as the identifying entry for deciding whether the certificate is in the list (either 

blocked or accepted).  It is suggested that the Common Name (CN) field be used. 

A.5 Certificate Signing Requests 
As indicated before, a device may need to present a valid certificate to the remote endpoint for 

the connection to succeed.  This certificate may be obtained in the following two ways: 

1. The remote endpoint (typically a server) generates a full set of credentials for the device, 

which includes both the certificate and the private key.  This set of credentials, possibly 

protected by a passphrase to keep the key secret, is then provided to the device. 

or 

2. The device generates a private key by itself.  This key will never leave the device for 

security reasons.  After generating the key, the device generates a Certificate Signing 

Request that can be sent as a file to the remote endpoint for signing by whatever CA is 



 

 44 VSF TR-06-2 
 

 

acceptable to it.  The remote endpoint then generates a certificate chain that that is 

returned to the device.  This certificate chain does not include the private key and does 

not need to be kept secret. 

Implementers are encouraged to provide enough functionality to support both cases described 

above. 

A.6 Certificate and Key File Formats 
To foster interoperability, it is important that the devices from different implementers agree on 

file formats.  Devices may need to be configured with a list of one or more acceptable CAs and 

may need to be configured with the certificates they need to use.  These certificates may be 

coming from equipment provided by a different implementer.  Therefore, a common file format 

needs to be agreed between these devices. 

It is suggested that, as a baseline, all equipment should support the PEM format, as defined in 

RFC 7468.  A PEM file is a text file, with the binary data encoded in Base64, and can include 

one or more certificates and may also contain keys.  It is also suggested that a single file be 

provided with all the information required – i.e., the CA chain, the certificate, and the private key 

if needed.  When using the PEM format, these can be simply concatenated.  The device should 

not assume any order for these items. 

An example of a combined file with a certificate and keys is: 

-----BEGIN CERTIFICATE----- 

MIIDfjCCAuegAwIBAgIJALYx7VgDX7U1MA0GCSqGSIb3DQEBBQUAMIGHMQswCQYD 

VQQGEwJVUzELMAkGA1UECBMCQ0ExEDAOBgNVBAcTB1Nhbkpvc2UxFzAVBgNVBAoT 

… (certificate continues) 

gQBAYeJpSnoKWk3c5Uy0PZl+/8ee9AZ/swYiES2+ehy/d4EGofuH4K+SFIx9fpH1 

zg507vBRNwiAegiawxkpMhsptV3Hv5rkFy0/nkg/uYKewOu6O0k1XEM7LbRiOumf 

cGA5sNColbALctgBd49Alf19sQPsvXhjjAuFqoPGNOF/Wg== 

-----END CERTIFICATE----- 

-----BEGIN RSA PRIVATE KEY----- 

MIICXQIBAAKBgQDgtzWVqihnzLhUTtAyGvab57IzqHu0R4j9C7QOArl/dqgrgBA9 

wtgRp3zwU9UHgrmzK++6NByA+VxsnGtVpl9RsiiUk0T+8uI4UcapeUE3AThQ29WE 

… (key continues) 

BUsETpWaKtebcnUuIaMCQQDUCipcuTEu9ITBf1uK9BNB2KQ1weF4q4pT2IjdFBEA 

g1FDrlIqP72OQodz54Xw+aWH314pMofAKcaIp1HCL69i 

-----END RSA PRIVATE KEY----- 

 

As indicated in the example, each element starts with five dashes and the word BEGIN, followed 

by the type of the element, followed by another five dashes.  The element ends the same way: 



 

 45 VSF TR-06-2 
 

 

five dashes, followed by the word END, followed by the same element type, followed by another 

five dashes. 

  



 

 46 VSF TR-06-2 
 

 

Annex B  PSK Key Generation Example (Informative) 
This Annex provides one example of 128-bit and 256-bit AES keys generated from a known 

passphrase and nonce.  It is provided to allow implementations to be checked against known 

values. 

The inputs are: 

 Passphrase: Reliable Internet Stream Transport 

 Nonce:  0x52495354 

Figure 18 shows the packet received from the network with the above nonce. 

 

Figure 18: Sample Received GRE Packet 

Using the PBKDF2 hashing algorithm specified in section 7.3, the following keys are derived 

from this input: 

 128 bit key:  1c2b0cfc90ae2638fea78c7fb2977047 

 256 bit key:  1c2b0cfc90ae2638fea78c7fb297704718bff7f4052743001a9b7ebb51cc9f1c 

The following Python 3 code can be used to generate the keys: 

import hashlib 

 

key = hashlib.pbkdf2_hmac("sha256", b'Reliable Internet Stream Transport', bytes.fromhex('52495354'), 1024, 16) 

print("Derived 128 bit key:", key.hex()) 

 

key = hashlib.pbkdf2_hmac("sha256", b'Reliable Internet Stream Transport', bytes.fromhex('52495354'), 1024, 32) 

print("Derived 256 bit key:", key.hex()) 

  

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|0| |1|1|Reserved0|H| RV  | Ver |         Protocol Type         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|      0x52     |      0x49     |      0x53     |      0x54     | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|                        Sequence Number                        | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 



 

 47 VSF TR-06-2 
 

 

Annex C  Supporting Multiple Clients Using the Same Server UDP Port 

(Informative) 
A RIST Main Profile server may offer the option of supporting multiple clients connected to the 

same UDP port.  From a traffic standpoint, the server can differentiate the packets from the 

various clients by using the combination of the source IP address and source UDP port in the 

packet.  Simple application examples for this use case are: 

 Multiple reporters in the field, each equipped with an encoder, sending live video content 

back to the newsroom.  Having a single UDP port open to receive all communication at 

the newsroom simplifies the setup of the encoders. 

 Multiple decoders connecting to an encoder to receive live video. 

There are situations where it becomes necessary to uniquely identify the client in order to either 

send specific content to it, or to direct the content coming from it to a specific receiver.  One 

example would be a situation where there are multiple feeds available at one site, and when a 

client connects, the “correct” feed needs to be sent to it. 

The following RIST Main Profile mechanisms are available to uniquely identify the clients: 

1. If DTLS is used with certificates, the various clients may be identified by the certificates 

they present to the server (see the discussion in Annex A ).  It is suggested that the 

Common Name (CN) be used as the identifier.  In this case, the system configuration 

must ensure that each client has a different CN. 

2. If TLS-SRP (see Section 6.4) or EAP SRP (see Section 7.5), each client will have a 

different username and password, and this combination may be used to differentiate 

between clients. 

3. If the keep-alive messages defined in Section 5.6.3 are used, the 48-bit MAC address 

included in the message may be used to differentiate between clients.  Implementations 

must ensure that the MAC addresses in the keep-alive messages are unique. 

4. Clients may be differentiated using the inner (tunnel) IP address.  In this mode, addresses 

are assigned a-priori by static configuration and are known to the server and clients.  The 

server can detect the client inner (tunnel) IP address using one of the following 

mechanisms: 

a. If the keep-alive messages defined in Section 5.6.3 are used, and the message has 

a JSON payload as described in Section 5.6.4, the server can inspect the 

tunnelIP element to find the client’s tunnel IP address.  

b. If the server and clients are using the Full Datagram Mode defined in Section 

5.3.1, the inner (tunnel) IP address can be read from the incoming encapsulated 

packets.  Note that, in this case, the client cannot be identified until it sends its 

first encapsulated IP packet. 



 

 48 VSF TR-06-2 
 

 

5. If the server and clients are using the Reduced Overhead Mode defined in Section 5.3.2, 

the source UDP port in the reduced UDP header shown in Figure 5 can be used to 

differentiate clients.  In this mode, ports are assigned a-priori by static configuration and 

are known to the server and clients.  Note that, in this case, the client cannot be identified 

until it sends its first encapsulated IP packet. 

If possible, the preferred way to identify the clients should be options 1 or 2 above.  Options 3, 4, 

and 5 do not require the use of DTLS and are available to clients without encryption support.  

Option 5 should only be used as the last possible resort if no other options are available. 

  



 

 49 VSF TR-06-2 
 

 

Annex D  Specification of the EAP SHA256-SRP6a Authentication 

Protocol (Normative) 

D.1 General Overview 
RIST Main Profile devices using PSK encryption have an intrinsic authentication mechanism, 

namely the knowledge of the Pre-Shared Key.  More specifically, if a device has been configured 

with the correct key and can decrypt the content, this device may be considered authenticated.  

This level of authentication may be sufficient for some applications. 

The method described in this Annex is available for applications where one additional level of 

authentication is required.  One example would be a situation where a server has a set of clients, 

all configured with the same Pre-Shared Key, but with different levels of access to content 

present in the server. 

For each authentication instance, the model is as follows: 

 There is one server and one or more clients. 

 Clients only communicate with the server. 

 Clients initiate the communication with the server by following the steps in section 5.6, 

or by sending the optional EAPOL-Start packet described below. 

 Upon tunnel establishment, the server shall initiate the authentication protocol described 

in this Annex. 

 The server and client shall not send any data packets and shall discard any received data 

packets until the authentication completes successfully.  Data packets are any GRE 

packets where the Protocol Type field is not 0x888E (see Figure 12). 

The authentication packets described in this Annex shall be transmitted encapsulated in GRE 

with Protocol Type 0x888E, as per Figure 12.  The EAPOL packets described in this Annex 

represent the payload of such GRE packets. 

D.2 Authentication Algorithm and Protocol 
Fundamentally, the authentication algorithm is based on a username/password pair.  The server 

has a list of all the usernames and passwords (in a secure format); an authorized client knows its 

username and password as well.  The authentication algorithm provides a secure way for the 

client to prove to the server that that it knows a valid username/password pair, in a way that a 

third-party monitoring the transactions cannot use the information exchanged to later 

successfully login to the server.  It also provides a secure way for the client to authenticate the 

server.  Finally, the algorithm also generates a common strong ephemeral shared key that may be 

used to encrypt future unicast communication between the authenticated client and the server. 

The algorithm is based on two fundamental values, the generator value “g” and the prime 

modulus “N”.  The server may use different values of “g” and “N” per client, since these values 



 

 50 VSF TR-06-2 
 

 

are communicated to the client at the beginning of the negotiation.  The following rules shall be 

observed: 

1. As indicated in section D.3.4.3, if “g” is not indicated, the client shall assume the default 

value of 2. 

2. “N” shall be a large safe prime, of at least 512 bits.  If “N” is not indicated, the client 

shall assume the default 2048-bit value indicated in section D.3.4.3. 

3. The value “g” shall not be higher than “N”. 

In the algorithm description below, the following operations are used: 

% Modulo operator (as in the C programming language); the remainder of a division.  The 

notation x % y shall indicate the remainder of the division of “x” by “y”. 

^ Modulo “N” exponentiation.  The notation x ^ y shall indicate the remainder of “x” to the 

power “y” when divided by the prime modulus “N”.  Example: 

x = 2 

y = 10 

N = 263 

x^y = (2^10) modulo 263 = 1024 modulo 263 = 235 (remainder of 1024/263) 

| String concatenation.  This operator creates a string that is a concatenation of its two 

arguments, in the same manner as the “strcat” function in a standard C library. 

The algorithm shall use the SHA256 hashing algorithm.  If multiple arguments are provided to 

the SHA256 function, this indicates that the arguments shall be concatenated, and the SHA256 

function applied to the combined value.  For example, SHA256(x, y) means “create a buffer with 

the contents of “x”, followed by the contents of “y”, and apply the SHA256 algorithm to the 

resulting buffer”.  When the SHA256 hash is applied to a string, the null terminator (if present) 

shall not be included in the hash computation. 

For each client, the server shall select a random salt “s”, containing at least four octets.  If the 

client password is denoted by “P” and the client username by “I”, the server shall compute the 

value “x” defined by: 

x = SHA256(s, SHA256(I | “:” | P)) 

For each client, the server shall compute the password verifier “v” as follows: 

v = g^x 

The server shall store the values “s” and “v” for each client, indexed by the client username “I”.  

The server should not store the cleartext password “P”. 



 

 51 VSF TR-06-2 
 

 

The client starts the authentication process by contacting the server using the EAPOL-Start 

message of section D.3.1 (or any empty message, such as a Keep-Alive).  The server requests the 

client username “I” using the Identity Request message of section D.3.3.1, and the client returns 

this information using the Identity Response message of section D.3.3.1. 

If the username “I” is known to the server, the server sends the corresponding “s”, “g” and “N” 

values to the client using the Challenge Request Packet of section D.3.4.3.  If the client’s 

username is not known to the server, it may abort at this point or continue with fake values for 

“s”, “g” and “N”.  This is described in detail in Section D.4. 

Upon reception of the Challenge Request Packet, the client caches the “s”, “g”, and “N” values, 

and generates a random number “a” between 1 and N-1.  It then computes the value “A” as 

follows: 

A = g^a 

The value “A” is returned to the server in the Client Key Response Packet of section D.3.4.4.  

The server caches this value for later use.  Upon reception of the Client Key Response, the server 

generates a random number “b” between 1 and N-1, and computes the value “B” as follows: 

k = SHA256(N, g) 

B = (kv + g^b) % N 

The value “B” is returned to the client in the Server Key Request Packet of section D.3.4.5.  

Upon receiving the value “B”, the client performs the following computations: 

u = SHA256(A, B) 

x = SHA256(s, SHA256(I, “:”, P)) 

k = SHA256(N, g) 

S = ((B – kg^x) ^ (a +ux)) % N 

K = SHA256(S) 

M1 = SHA256(SHA256(N) xor SHA256(g), SHA256(I, s, A, B, K)) 

The value “M1” above is returned to the server in the Client Validator Response Packet from 

section D.3.4.6, and the client caches the session key “K”. 

Upon receiving the “M1” value, the server performs the following computations: 

u = SHA256(A, B) 

S = ((Av^u) ^ b) % N 

K = SHA256(S) 

M1 = SHA256(SHA256(N) xor SHA256(g), SHA256(I, s, A, B, K)) 

If the local “M1” calculation yields the same value as the received “M1” value, the server shall 

consider the client as authenticated.  It computes the value “M2” as follows: 



 

 52 VSF TR-06-2 
 

 

M2 = SHA256(A, M1, K) 

The “M2” value is returned to the client using the Server Validator Request Packet from 

section D.3.4.7.  Upon receiving this packet, the client performs the same computation, and if the 

local calculation yields the same “M2” value as the received packet, the client shall consider the 

server authenticated. 

D.3 Packet Formats 
This section describes the various packet formats used in the authentication process.  The packet 

formats follow a hierarchical structure based on GRE-encapsulated EAPOL packets.  The 

hierarchy is depicted in Figure 19.  The highlighted items in Figure 19 represent the actual 

packets transmitted in the network at the various phases of the protocol and are documented in 

this section.  All protocol transactions shall use unicast addressing between server and client. 

 

D.3.1 EAP Encapsulation 

Figure 20 shows the authentication packet format.   

 

Figure 19: Authentication Packet Format Hierarchy 

EAPOL Packet

Start Logoff EAP Packet

RequestSuccess Failure Response

Identity Nak

Code

Type

Subtype

EAP SRP-SHA256

Client Key

Client Validator

Challenge

Server Key

Server Validator

PassphrasePassphrase

EAPOL Type



 

 53 VSF TR-06-2 
 

 

The sender shall set the fields in Figure 20 as follows: 

 EAP Version (8 bits): Senders shall set this field to “3” to indicate compliance with this 

Specification. 

 EAPOL Type (8 bits): Senders shall set this field as follows: 

o 0x00: EAPOL-EAP: the packet payload field contains an EAP packet. 

o 0x01: EAPOL-Start: optional packet sent by the client to initiate the 

authentication process with the server.  EAPOL-Start packets do not have a 

payload field. 

o 0x02: EAPOL-Logoff: optional packet sent before closing the connection, to 

revert to the non-authenticated state.  This packet can be sent by either server or 

client.  EAPOL-Logoff packets do not have a payload field. 

o 0x03-0xFF: Reserved.  Receivers shall silently discard packets with these types. 

 Payload Length (16 bits): Senders shall set this field to the length, in bytes, of the 

Packet Payload field.  Since EAPOL-Start and EAPOL-Logoff packets have no payload, 

senders shall set this field to “0” zero for these two packet types. 

D.3.2 EAPOL Type 0 Packet Format 

Figure 21 shows the packet payload format for EAPOL Type 0.   

The sender shall set the fields in Figure 21 as follows: 

 Code (8 bits): Senders shall set this field to identify the type of EAP packet, as follows: 

o 0x01: Request 

o 0x02: Response 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 |  EAPOL Type   |        Payload Length         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

:                 Packet Payload (EAPOL Type=0)                 : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 20: Authentication Packet Format 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |        Payload Length         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|     Code      |  Identifier   |            Length             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| Data (variable, depends on Code)  ...                           

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                           

 

Figure 21: Packet Payload for EAPOL Type=0 



 

 54 VSF TR-06-2 
 

 

o 0x03: Success 

o 0x04: Failure 

o All other values: reserved. Receivers shall silently discard packets with these 

values. 

 Identifier (8 bits): This field is used to match responses with requests.  The sender shall 

select an arbitrary value for the request packet.  The receiver shall use the same value for 

the response to that request, which may be a Response packet, a Success packet, or a 

Failure packet.  The identifier shall be incremented by one by the sender at every new 

request message and shall not be changed on a retransmission of a message.  Receivers 

shall discard non-matching Response messages.  As indicated in Section D.4, a full 

authentication exchange includes up to four distinct packets originated by the 

authentication server.  The authentication server shall use four consecutive values for the 

Identifier field for each protocol exchange, and successive protocol exchanges for the 

same connection (identified by client IP address and source UDP port) shall use 

non-overlapping Identifier values.  Since the Identifier field is only 8 bits, the value 0x00 

is deemed to follow the value 0xFF. 

 Length (16 bits): Senders shall set this field to the length of the EAP packet, including 

the Code, Identifier, Length and the variable-size data.  If the overall packet is longer 

than what is indicated by the length field, additional octets shall be ignored by receivers.  

If the overall packet is truncated (i.e., not enough octets received to satisfy the length 

field), receivers shall discard the packet. 

 Data (variable): The data field is zero or more octets.  The size and format of the data 

field depends on the Code field, as described below. 

D.3.3 Request And Response Packet Formats 

Figure 22 shows the packet payload format for Request (Code=0x01) and Response 

(Code=0x02) packets.   

The sender shall set the fields in Figure 22 as follows: 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |        Payload Length         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|  Code=1 or 2  |  Identifier   |            Length             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|     Type      | Type-Data (variable, depends on Type) ...       

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-                

 

Figure 22: Packet Payload Format for Request/Response Packets 



 

 55 VSF TR-06-2 
 

 

 Type (8 bits): The Type field shall be set by the sender to indicate the format of the 

messages used in the Request/Response exchanges.  The following values are defined in 

this document: 

o 0x01: Identity 

o 0x03: Nak (only valid for Response packets, shall not be sent on Request packets) 

o 0x13: EAP SRP-SHA256 

o All other values reserved. 

 Type-Data (variable): The sender shall set this field depending on the Type value, as 

documented below. 

D.3.3.1 Identity Request/Response Packets 

Identity Request packets are sent from the server to the client.  Upon reception of the Identity 

request packet, the client shall answer with the Identity Response packet.  In the Identity Request 

packet, the server may include a displayable message in the Type-Data field.  The client shall 

return its identity as a string (typically the Username) in the Type-Data field.  Strings shall not be 

null-terminated. 

 

D.3.3.2 Nak Response Packets 

Nak Response Packets shall be sent in response to any unknown or unsupported requests.  The 

Type-Data field shall be set by the sender to one octet with value 0x13, to indicate that only EAP 

SRP-SHA256 authentication is supported.  The Nak response packet is shown in Figure 24. 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |        Payload Length         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|  Code=1 or 2  |  Identifier   |            Length             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   Type=0x01   | Message for Code=1, Username for Code=2         

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                 

 

Figure 23: Identity Packets 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |       Payload Length=6        | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|    Code=2     |  Identifier   |           Length=6            | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   Type=0x03   |   Data=0x13   |                                 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                 

 

Figure 24: Nak Response Packet 



 

 56 VSF TR-06-2 
 

 

D.3.4 EAP SRP-SHA256 Packet Formats 

Figure 25 shows the packet formats for the EAP SRP-SHA256 packets.   

The sender shall set the fields in Figure 25 as follows: 

 Subtype (8 bits): The subtype field shall be set by the sender to one of the following 

values: 

o 0x01: Challenge / Client Key 

o 0x02: Server Key / Client Validator 

o 0x03: Server Validator 

o 0x10: Passphrase Request / Response 

o All other values reserved.  If a device receives an unknown subtype, it shall 

respond with a packet of Type Nak. 

 Subtype Data (variable): The sender shall set this field depending on the Type and 

Subtype values, as documented below. 

D.3.4.3 EAP SRP-SHA256 Challenge Request Packet 

The EAP SRP-SHA256 Challenge is a Request packet sent from the server to the client once the 

username has been received from the client.  It includes the unauthenticated server name for 

verification purposes, the password salt “s”, the generator value “g”, and the prime modulus “N”.  

The packet format is shown in Figure 26. 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |        Payload Length         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|  Code=1 or 2  |  Identifier   |            Length             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   Type=0x13   |    Subtype    |                               : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Subtype-Data (variable)     : 

:                                                               : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 25: EAP SRP-SHA256 Packet Formats 



 

 57 VSF TR-06-2 
 

 

The server shall set the fields in the packet in Figure 26 as follows: 

 Name Length (8 bits): A single octet giving the length of the Name field in octets.   

 Name (variable): The server name.  This field is not authenticated.  It shall not be used 

by the client as an authenticated peer name.  The server name may be used by the client 

in an implementation-dependent manner. 

 Salt Length (8 bits): A single octet giving the length of the Salt field in octets.  The Salt 

Length shall be at least 4 octets and may be any length up to 255 octets. 

 Salt (variable): Password salt; may contain any values.  The contents of this field shall 

correspond to “s” in the SRP algorithm. 

 Gen Length (8 bits): A single octet giving the length of the Generator field in octets.  If 

this field has the value zero, the default generator value of 2 shall be used and the 

Generator field shall not be present. 

 Generator (variable): The Generator value, called “g” in the SRP algorithm, is in 

network byte order.  If the Gen Length field is zero, then the Generator field shall be 

omitted, and “g” shall be set to 2. 

 Prime Modulus (variable): The Prime Modulus value, called “N” in the SRP algorithm, 

is in network byte order and fills the rest of the message to the length specified by the 

Length field in the EAP header.  If the Gen Length field is zero, the Prime Modulus field 

may be omitted to select the default “N” value listed below. If the Prime Modulus field is 

present, then it should be at least 64 octets (512 bits).  Longer values are recommended. 

If the Prime Modulus field in Figure 26 is empty, the client shall assume the value below for 

value “N”.  In this case, the Gen Length value shall be zero and the Generator value shall be 

assumed as “2”.  The value for “N” is: 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |        Payload Length         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|    Code=1     |  Identifier   |            Length             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   Type=0x13   |  Subtype=0x01 |  Name Length  |Name (variable): 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|  Salt Length  |    Salt (variable) ...                        : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|  Gen Length   |    Generator (variable) ...                   : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|  Prime Modulus (variable) ...                                 : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 26: EAP SRP-SHA256 Challenge Packet 



 

 58 VSF TR-06-2 
 

 

D.3.4.4 EAP SRP-SHA256 Client Key Response Packet 

The EAP SRP-SHA256 Client Key is a Response packet sent by the client in response the 

Challenge packet described in section D.3.4.3.  The packet format is shown in Figure 27. 

 

0xAC, 0x6B, 0xDB, 0x41, 0x32, 0x4A, 0x9A, 0x9B, 0xF1, 0x66, 

0xDE, 0x5E, 0x13, 0x89, 0x58, 0x2F, 0xAF, 0x72, 0xB6, 0x65, 

0x19, 0x87, 0xEE, 0x07, 0xFC, 0x31, 0x92, 0x94, 0x3D, 0xB5, 

0x60, 0x50, 0xA3, 0x73, 0x29, 0xCB, 0xB4, 0xA0, 0x99, 0xED, 

0x81, 0x93, 0xE0, 0x75, 0x77, 0x67, 0xA1, 0x3D, 0xD5, 0x23, 

0x12, 0xAB, 0x4B, 0x03, 0x31, 0x0D, 0xCD, 0x7F, 0x48, 0xA9, 

0xDA, 0x04, 0xFD, 0x50, 0xE8, 0x08, 0x39, 0x69, 0xED, 0xB7, 

0x67, 0xB0, 0xCF, 0x60, 0x95, 0x17, 0x9A, 0x16, 0x3A, 0xB3, 

0x66, 0x1A, 0x05, 0xFB, 0xD5, 0xFA, 0xAA, 0xE8, 0x29, 0x18, 

0xA9, 0x96, 0x2F, 0x0B, 0x93, 0xB8, 0x55, 0xF9, 0x79, 0x93, 

0xEC, 0x97, 0x5E, 0xEA, 0xA8, 0x0D, 0x74, 0x0A, 0xDB, 0xF4, 

0xFF, 0x74, 0x73, 0x59, 0xD0, 0x41, 0xD5, 0xC3, 0x3E, 0xA7, 

0x1D, 0x28, 0x1E, 0x44, 0x6B, 0x14, 0x77, 0x3B, 0xCA, 0x97, 

0xB4, 0x3A, 0x23, 0xFB, 0x80, 0x16, 0x76, 0xBD, 0x20, 0x7A, 

0x43, 0x6C, 0x64, 0x81, 0xF1, 0xD2, 0xB9, 0x07, 0x87, 0x17, 

0x46, 0x1A, 0x5B, 0x9D, 0x32, 0xE6, 0x88, 0xF8, 0x77, 0x48, 

0x54, 0x45, 0x23, 0xB5, 0x24, 0xB0, 0xD5, 0x7D, 0x5E, 0xA7, 

0x7A, 0x27, 0x75, 0xD2, 0xEC, 0xFA, 0x03, 0x2C, 0xFB, 0xDB, 

0xF5, 0x2F, 0xB3, 0x78, 0x61, 0x60, 0x27, 0x90, 0x04, 0xE5, 

0x7A, 0xE6, 0xAF, 0x87, 0x4E, 0x73, 0x03, 0xCE, 0x53, 0x29, 

0x9C, 0xCC, 0x04, 0x1C, 0x7B, 0xC3, 0x08, 0xD8, 0x2A, 0x56, 

0x98, 0xF3, 0xA8, 0xD0, 0xC3, 0x82, 0x71, 0xAE, 0x35, 0xF8, 

0xE9, 0xDB, 0xFB, 0xB6, 0x94, 0xB5, 0xC8, 0x03, 0xD8, 0x9F, 

0x7A, 0xE4, 0x35, 0xDE, 0x23, 0x6D, 0x52, 0x5F, 0x54, 0x75, 

0x9B, 0x65, 0xE3, 0x72, 0xFC, 0xD6, 0x8E, 0xF2, 0x0F, 0xA7, 

0x11, 0x1F, 0x9E, 0x4A, 0xFF, 0x73 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |        Payload Length         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|    Code=2     |  Identifier   |            Length             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   Type=0x13   |  Subtype=0x01 | Value A (variable) ...          

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 27: EAP SRP-SHA256 Client Key Packet Format 



 

 59 VSF TR-06-2 
 

 

The client shall set the fields in Figure 27 as follows: 

 Value A (variable): The result of g^a, where “a” is a randomly chosen number in the 

range 1 .. N (exclusive), as described in section D.2.  The randomly chosen number is the 

client’s private key, and the Value A field is the corresponding public key.  This field 

shall be in network byte order and shall not be padded.  The “A” value shall not be zero 

modulo N.  If the server receives a bad value for this field, it shall send a Failure packet 

described in Section D.3.5 and shall disconnect the link. 

D.3.4.5 EAP SRP-SHA256 Server Key Request Packet 

The EAP SRP-SHA256 Server Key is a Request packet sent by the server after it has received 

the Client Key packet described in section D.3.4.4.  The packet format is shown in Figure 28. 

The server shall set the fields in Figure 28 as follows: 

 Value B (variable): The result of (kv + g^b) % N, where “b” is a randomly chosen 

number in the range 1 .. N (exclusive), “v” is the stored verifier from the authentication 

database, and k=SHA256(N, g), as described in section D.2.  The randomly chosen 

number is the server’s private key, and the Value B field is the corresponding public key.  

This field shall be in network byte order and shall not be padded.  The B value shall not 

be zero modulo N.  If the client receives a bad value for this field, it shall send a Failure 

packet described in Section D.3.5 and shall disconnect the link. 

D.3.4.6 EAP SRP-SHA256 Client Validator Response Packet 

The EAP SRP-SHA256 Client Validator is a Response packet sent by the client in response to 

the Server Key packet described in section D.3.4.5.  The packet format is shown in Figure 29. 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |        Payload Length         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|    Code=1     |  Identifier   |            Length             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   Type=0x13   |  Subtype=0x02 | Value B (variable) ...          

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 28: EAP SRP-SHA256 Server Key Packet Format 



 

 60 VSF TR-06-2 
 

 

The client shall set the fields in Figure 29 as follows: 

 Reserved1 (16 bits), Reserved2 (15 bits): The client shall set these bits to zero on 

transmission, and the server shall ignore them on reception. 

 U (1 bit): The client shall set this bit to signal to the sender that it intends to use the 

derived key K (see section D.2 and the M1 computation below) as the PSK passphrase.  

If this bit is set, the server shall use K as the passphrase to decrypt the traffic received 

from the client. 

 M1 (32 octets):  The 32 octet values are calculated as follows (see section D.2): 

x = SHA256(s, SHA256(I | “:” | P)) 

u = SHA256(A, B) 

S = ((B – kg^x) ^ (a +ux)) % N 

K = SHA256(S) 

M1 = SHA256(SHA256(N) xor SHA256(g), SHA256(I, s, A, B, K)) 

Upon reception of the Client Validator response, the server shall compute the M1 value and 

check against the value that is received from the client.  If the value matches, the client is 

deemed authenticated and the server sends the Server Validator Request packet described in 

section D.3.4.7.  If the M1 value does not match, authentication has failed.  The server shall send 

the Failure packet described in section D.3.5 and shall disconnect the link. 

D.3.4.7 EAP SRP-SHA256 Server Validator Request Packet 

The EAP SRP-SHA256 Server Validator is a Request packet sent by the server in response to the 

Client Validator packet described in section D.3.4.6.  The packet format is shown in Figure 30. 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |        Payload Length         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|    Code=2     |  Identifier   |            Length             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   Type=0x13   |  Subtype=0x02 |            Reserved1          | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|           Reserved2         |U| Value M1 (32 octets) ...        

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 29: EAP SRP-SHA256 Client Validator Packet Format 



 

 61 VSF TR-06-2 
 

 

The server shall set the fields in Figure 30 as follows: 

 Reserved1 (16 bits), Reserved2 (15 bits): The server shall set these bits to zero on 

transmission, and the client shall ignore them on reception. 

 U (1 bit): The server shall set this bit to signal to the client that it intends to use the 

derived key K (see section D.2 and the M2 computation below) as the PSK passphrase.  

If this bit is set, the client shall use K as the passphrase to decrypt the traffic received 

from the server. 

 M2 (32 octets):  The 32 octet values are calculated as follows: 

u = SHA256(A, B) 

S = ((Av^u) ^ b) % N 

K = SHA256(S) 

M2 = SHA256(A, M1, K) 

Upon reception of the Server Validator request, the client shall compute the M2 value and check 

against what was received from the server.  If the value matches, the server is deemed 

authenticated and the client shall send the Success packet described in section D.3.5 and the 

authentication process is complete.  If the M2 value does not match, authentication has failed. 

The client shall send the Failure packet described in section D.3.5 and shall disconnect the link. 

D.3.4.8 EAP SRP-SHA256 Passphrase Request Packet 

The EAP SRP-SHA256 Passphrase Request packet is used by a receiver to request the 

passphrase currently in use by the sender.  This packet may be used by the client and/or the 

server, as different passphrases may be in use on either communication direction.  The packet 

format is shown in Figure 31. 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |        Payload Length         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|    Code=1     |  Identifier   |            Length             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   Type=0x13   |  Subtype=0x03 |            Reserved1          | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|           Reserved2         |U| Value M2 (32 octets) ...        

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 30: EAP SRP-SHA256 Server Validator Packet Format 



 

 62 VSF TR-06-2 
 

 

If used, this packet shall only be transmitted after both the server and the client have been 

authenticated.  The recipient of the packet shall respond to it as follows: 

 If the recipient of the packet does not support passphrase requests, it shall respond with 

the Nak packet as per section D.3.3.2. 

 If the recipient of the packet supports passphrase requests, it shall respond as follows: 

o If authentication is not complete, the recipient of the packet shall respond with the 

Failure packet as per section D.3.5. 

o If authentication is complete, the recipient of the packet shall respond with the 

EAP SRP-SHA256 Passphrase Response as per section D.3.4.9. 

D.3.4.9 EAP SRP-SHA256 Passphrase Response Packet 

The EAP SRP-SHA256 Passphrase Response provides the passphrase, encrypted by the common 

session K.  As indicated in section D.3.4.8, this response is only issued if authentication has 

successfully completed.  The packet format is shown in Figure 32. 

The sender shall set the fields in Figure 32 as follows: 

 U (1 bit): This bit shall be set to the same value as the U bit in the validator packet 

transmitted by the sender (either the Client Validator in Figure 29 or the Server Validator 

in Figure 30).  If this bit is set, it indicates that the session key K is to be used as the 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |       Payload Length=6        | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|    Code=1     |  Identifier   |           Length=6            | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   Type=0x13   | Subtype=0x10  |                                 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                 

 

Figure 31: EAP SRP-SHA256 Passphrase Request Packet 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |        Payload Length         | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|    Code=2     |  Identifier   |            Length             | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|   Type=0x13   | Subtype=0x10  |U|H| Reserved  |               : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               : 

:               Encrypted Passphrase (variable) ...             : 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 32: EAP SRP-SHA256 Passphrase Response Packet 



 

 63 VSF TR-06-2 
 

 

passphrase.  In this case, the Encrypted Passphrase field in Figure 32 is not included in 

the packet. 

 H (1 bit): This bit indicates the AES key length used in the encryption of the passphrase, 

as follows: 

o H=0: 128-bit 

o H=1: 256-bit 

 Reserved (6 bits): This field shall be set to zero by the sender and ignored by the 

receiver. 

 Encrypted Passphrase (variable): This field shall be set to the encrypted passphrase, 

generated as follows: 

o Encryption algorithm: AES-CTR. 

o Key length: as indicated by the H bit. 

o Key: the first 128 or 256 bits of the session key K. 

o IV: the most significant 8 bits of the IV shall be set to the value in the Identifier 

field.  The remainder of the IV shall be padded with zeros. 

The recipient of the EAP SRP-SHA256 Passphrase Response packet shall acknowledge its 

reception by sending a Success packet (see section D.3.5) with the same Identifier as the 

Passphrase Response packet being acknowledged. 

If the sender is employing the on-the-fly passphrase change mechanism described in section 7.4, 

it may send an unsolicited Passphrase Response Packet with the new passphrase.  In such a 

situation, the sender shall use a value for the Identifier field that is different from the previous 

Passphrase Response packet.  The sender shall not send a new passphrase until it starts using the 

passphrase from the last Passphrase Response packet to generate the AES key used to encrypt 

the stream.  In a multicast environment, the sender is responsible for contacting all receivers that 

are selected to receive the new passphrase; the details of this process are left to the discretion of 

the implementer. 

D.3.5 Success and Failure Packet Formats 

Figure 33 shows the packet format for Success (code 3) and Failure (code 4) packets.  Such 

packets have no additional data.  The sender shall set the Identifier to match the value of the 

corresponding Request/Response packet. 

0                   1                   2                   3   

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| EAP Version=3 | EAPOL Type=0  |       Payload Length=4        | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|  Code=3 or 4  |  Identifier   |           Length=4            | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 33: Packet Payload Format for Success/Failure Packets 



 

 64 VSF TR-06-2 
 

 

D.4 Protocol Exchanges 
This section describes the authentication protocol exchanges.  For each exchange, the server 

selects a starting value for the 8-bit Identifier field as described in section D.3.2, and increments 

this value for each successive request.  In the protocol exchanges presented in this section, the 

starting value of the Identifier field is denoted by n.   

Figure 34 shows the protocol exchange for a successful authentication exchange.  The client can 

start the process (message 1) using the EAPOL-Start message or any unsolicited message, such 

as a Keep Alive packet. 

Figure 35 shows a possible protocol exchange for the case where the username is unknown to the 

server.  Use of this protocol exchange for unknown usernames allows a third party to “test” 

whether some usernames exist in the server.  If this is a concern, the protocol exchange shown in 

Figure 36 may be used instead, with the server sending random data in messages 4 and 6. 

Figure 36 shows the protocol exchange when the client authentication fails.  This is determined 

at the server when the value carried in the Client Validator packet in message 7 does not match 

the value computed by the server.  This will happen if the client does not have the correct 

password.  This exchange can also be used when the client username does not exist in the server, 

with random (fake) data in messages 4 and 6. 

Msg 
Client 

Direction 
Server 

Message Section Identifier Message Section Identifier 

1 EAPOL-Start D.3.1 - →    

2    ← Identity Req D.3.3.1 n 

3 Identity Res D.3.3.1 n →    

4    ← Challenge D.3.4.3 n+1 

5 Client Key D.3.4.4 n+1 →    

6    ← Server Key D.3.4.4 n+2 

7 Client Val D.3.4.6 n+2 →    

8    ← Server Val D.3.4.7 n+3 

9 Success D.3.5 n+3 →    

 

Figure 34: Protocol Exchange for Successful Authentication 

Msg 
Client 

Direction 
Server 

Message Section Identifier Message Section Identifier 

1 EAPOL-Start D.3.1 - →    

2    ← Identity Req D.3.3.1 n 

3 Identity Res D.3.3.1 n →    

4    ← Failure D.3.5 n 

 

Figure 35: Protocol Exchange for Unknown Username 



 

 65 VSF TR-06-2 
 

 

Figure 37 shows the protocol exchange when the server validation fails.  This will likely only 

happen if the client is connecting to a device who is impersonating the server.  Such a device will 

have no knowledge of the password; it can go through the steps and pretend they completed 

successfully, but at message 8, the client detects that the server validation has failed. 

Message 9 in Figure 37 is optional.  If server validation fails, the client may simply stop 

communicating with the server and may ignore all further messages from it. 

D.5 Re-Authentication 
In some situations, it is desirable to periodically re-authenticate the endpoints (server and/or 

client).  If requested by the other endpoint, server and client shall respond to the 

re-authentication process described in this section.  Server and client may support initiating the 

re-authentication process. 

During re-authentication, normal data exchange between server and client shall continue.  If 

re-authentication fails, all communication between server and client shall stop. 

Msg 
Client 

Direction 
Server 

Message Section Identifier Message Section Identifier 

1 EAPOL-Start D.3.1 - →    

2    ← Identity Req D.3.3.1 n 

3 Identity Res D.3.3.1 n →    

4    ← Challenge D.3.4.3 n+1 

5 Client Key D.3.4.4 n+1 →    

6    ← Server Key D.3.4.4 n+2 

7 Client Val D.3.4.6 n+2 →    

8    ← Failure D.3.5 n+2 

 

Figure 36: Protocol Exchange for Client Authentication Failure 

Msg 
Client 

Direction 
Server 

Message Section Identifier Message Section Identifier 

1 EAPOL-Start D.3.1 - →    

2    ← Identity Req D.3.3.1 n 

3 Identity Res D.3.3.1 n →    

4    ← Challenge D.3.4.3 n+1 

5 Client Key D.3.4.4 n+1 →    

6    ← Server Key D.3.4.4 n+2 

7 Client Val D.3.4.6 n+2 →    

8    ← Server Val D.3.4.7 n+3 

9 Failure D.3.5 n+3 →    

 

Figure 37: Protocol Exchange for Server Authentication Failure 



 

 66 VSF TR-06-2 
 

 

To start re-authentication, the server shall send an Identity Request packet (section D.3.3.1) to 

the client to start the process.  This is packet 2 in Figure 34.  The protocol will then follow the 

steps shown in Figure 34 for successful authentication, or Figure 35, Figure 36 or Figure 37 for 

authentication failures. 

To start re-authentication, the client shall send an EAPOL-Start packet (section D.3.1) to the 

server to start the process.  This is packet 1 in Figure 34.  The protocol will then follow the steps 

shown in Figure 34 for successful authentication, or Figure 35, Figure 36 or Figure 37 for 

authentication failures. 

The re-authentication process will yield a new session key K.  If either the server and/or the 

client signal the use of the session key K as the PSK passphrase by using the U bit in the 

messages described in sections D.3.4.6 and/or D.3.4.7, the protocol described in section 7.4 shall 

be used to switch to the new passphrase.  If server and/or client are using the session key as the 

PSK passphrase, they are not required to set the U bit in the re-authentication session; in such a 

case, the original passphrase remains in use. 

The interval between successive re-authentication sessions between a server and a given client 

shall be no less than 60 seconds. 

D.6 UDP Transport Considerations 
The protocol described in this Annex runs over UDP.  Therefore, it is possible for packets to be 

re-ordered, duplicated, or dropped.   

The authentication process is driven by the server.  If an expected response is not received by a 

given timeout, the request is retried.  The server shall discard duplicate responses.  After a 

certain number of retries, the server shall discard all the information received and shall wait to be 

contacted again by the client.  The number of retries is left at the discretion of the implementer 

but should be no less than three.  The timeout is also left at the discretion of the implementer, 

and it should be a multiple of the round-trip time between server and client.  While RIST 

includes mechanisms to measure the round-trip time, such mechanisms are only available after 

the connection is established.  Therefore, the round-trip time needs to be determined by means 

outside of this Specification. 

As indicated in Figure 34, a successful authentication exchange requires four packets from the 

server, and the first packet is the Identity Request (section D.3.3.1).  The client shall save the 

Identifier from that message, which we will denote by n.  The client shall only respond to 

packets with Identifier in the range of n to n+3 and shall silently discard all packets with 

identifier values not in this range.  If a client receives a packet with an identifier value of k, with 

n < k ≤ n+3, the client shall silently discard this packet if it has yet not received the packet with 

identifier k-1.  If the last response the client sent was for identifier k, with n < k ≤ n+3, and now 

the client receives a packet with identifier m, with n ≤ m ≤ k, it shall re-send the original response 

for identifier m.  During an authentication session, the random server and client keys shall not 



 

 67 VSF TR-06-2 
 

 

change.  For example, if the client receives a duplicate Challenge packet (message 4 in Figure 

34), it shall re-send the same Client Key response as with the original request. 

The client shall implement a timeout mechanism for expected messages from the server, until 

authentication completes.  If a protocol message does not arrive by the timeout, the client shall 

restart the authentication process.  This timeout is left to the discretion of the implementer and 

should be a multiple of the round-trip time. 

For the Passphrase Request/Response messages in sections D.3.4.8 and D.3.4.9, the sender of 

each message shall implement a timeout mechanism after each message.  If a response is not 

received by the timeout, the message is retried.  After a certain number of retries, the sender shall 

abort the process.  The recovery mechanism in this case is left to the discretion of the 

implementer. 

D.7 Multicast Authentication (Informative) 
The mechanism described in this Annex can be used to provide authentication in a multicast 

environment under the following conditions: 

1. A sender is transmitting a RIST Main Profile stream with PSK encryption to an IP 

multicast address. 

2. While any device in the network can join the multicast, only authenticated devices are 

allowed to decrypt the content. 

3. Unicast bidirectional communication is possible between the sender and all receivers of 

the multicast. 

4. Receivers are configured with the multicast address and UDP port through external 

means not covered by this Specification. 

5. The sender of the stream is also the authentication server.  Alternatively, a separate 

authentication server can be used, under the following conditions: 

a. The multicast receivers are configured with the IP address and UDP port of the 

authentication server through external means not covered by this Specification. 

b. The authentication server has knowledge of the passphrase in use to encrypt the 

multicast stream. 

Operation is as follows: 

 The receiver joins the multicast.  Since it does not have the passphrase yet, it cannot 

decrypt the content. 

 The receiver uses the source IP address and source UDP port from the received multicast 

packets to initiate an authentication session with the sender of the content.  Alternatively, 

the receiver may instead contact a pre-configured authentication server.  The 

authentication session is initiated with an EAPOL-Start packet, as described in in 

section D.3.1. 



 

 68 VSF TR-06-2 
 

 

 If the authentication session finishes successfully, the receiver requests the PSK 

passphrase using the passphrase request packet described in section D.3.4.8, and the 

server responds with the passphrase response packet described in section D.3.4.9. 

 At this point, the receiver can now decrypt the PSK stream.  As required by this 

Specification, the receiver will send keep-alive unicast packets back to the sender. 

The re-authentication process described in section D.5can be used in this multicast environment.  

As indicated in that section, the re-authentication can be started either by the client (receiver) or 

the server (sender).   

If a receiver-initiated re-authentication fails, the receiver simply leaves the multicast and stops 

processing the data. 

Senders know which receivers are active due to the keep-alive messages.  If the re-authentication 

fails with a subset of the receivers, the sender will need to change the PSK passphrase to remove 

their access.  The process will happen as follows: 

 The server generates a new passphrase through means outside this Specification. 

 The server sends the new passphrase to the subset of receivers for which authentication 

succeeded, using the passphrase response packet and mechanism from section D.3.4.9.  

For each allowed receiver, the session key from the new successful authentication will be 

used. 

 Once all the allowed receivers have the new passphrase, the on-the-fly passphrase change 

mechanism from section 7.4 is used to switch to the new passphrase. 

D.8 Multi-Link Operation (Informative) 
It is possible to use the authentication mechanism described in this Annex in a multi-link 

application.  In this case, there are multiple links between the server and the client.  These links 

can be used in Bonding (Load Share) mode, where the traffic is spread between the links, or in 

Seamless Switching mode, where the traffic is replicated across the links.  The following 

considerations apply to both modes of operation, at the discretion of the implementer: 

 One option is to run independent authentication sessions on each link.  Even if the same 

username/password is used in all links, the session key will be different per link.  If the 

session key is used as the passphrase, each link will have its own PSK encryption key. 

 Another option is to combine the links.  In this case, the GRE sequence number (see 

Figure 2) needs to be included in the packet.  Each endpoint implements a re-order 

section in the receive buffer (as described in TR-06-1 Section 5.3.1), where packets are 

re-ordered and duplicates are removed.  The resulting packet flow is then used for 

authentication.  In this case, a single authentication session and passphrase will be used 

across all links.  This case also allows for links to be dynamically added as needed at any 

time. 



 

 69 VSF TR-06-2 
 

 

D.9 Authentication Example (Informative) 
This section provides a numerical example of an authentication exchange.  It is provided to allow 

implementations to be checked against known values.  In the example below, all numeric values 

are presented in base 16 (hexadecimal).  Underlined values are random numbers, bold values are 

computation results.  The example uses the weakest legal modulus value (512-bit) for simplicity.  

Use of this modulus length in actual implementations is discouraged. 

The inputs for the algorithm in this example are: 

Modulus “N”:  

D66AAFE8E245F9AC245A199F62CE61AB8FA90A4D80C71CD2A

DFD0B9DA163B29F2A34AFBDB3B1B5D0102559CE63D8B6E86B

0AA59C14E79D4AA62D1748E4249DF3 

Generator “g”:  2 

Username “I”:  rist 

Password “P”:  mainprofile 

The server generates a random salt “s” for each username/password pair.  In this example, the 

following salt value is used: 

Salt “s”:  

72F9D5383B7EB7599FB63028F47475B60A55F313D40E0BE02

3E026C97C0A2C32 

The server computes the password verifier “v” as follows (see section D.2): 

x = SHA256(s, SHA256(I | “:” | P)) 

v = g^x 

For the example inputs, the values will be: 

Value “x”:  

8578DED647FC7E82D37886EBEF2C300EB0213CCC321D8A43A

0DE2131B720C9C8 

Verifier “v”:  

557EA208F87A23C28936423EC16ABE6BD959933DFBEFC0B36

EBD9335DE3997C97DDFA081D64CFBC6EFBFD5BE19F2ED9F77

922FD7E88BBA6C6B310A9018EC4305 

The server stores the salt “s” and the verifier “v” indexed by the username “I”.  There is no need 

for the server to store the password “P”.  Once this is in place, the server is ready to authenticate 

the client. 



 

 70 VSF TR-06-2 
 

 

As illustrated in Figure 34, the client starts the authentication process by sending the 

EAPOL-Start packet.  The server will send the Identity Request packet, and the client will 

respond with the Identity Response packet, indicating the “rist” username.  The server will 

then send the Challenge Request packet from section D.3.4.3 containing the values “s”, “g” and 

“N”, which are cached by the client. 

The client generates a random number “a” between 1 and N-1.  In this example, the following 

value is used: 

Value “a”:  

138AB4045633AD14961CB1AD0720B1989104151C070879449

1113302CCCC27D5 

The client uses the random value “a” to compute the client key “A” using the following formula: 

A = g^a 

In this example, the client key “A” value is computed as: 

Client key “A”: 

92C4CEFB95A1AE2E576A252B19273FD4613F44FDA4AC8CC84

A089D5740756223943882BAD34CB55F35139CDDB60E0D19AC

D2B884CFB27F53C8EA969269ABE014 

The client key “A” is returned to the server using the Client Key Response Packet from 

section D.3.4.4.  The server checks that A % N is not zero and caches the value “A”.   

The server generates a random number “b” between 1 and N-1.  In this example, the following 

value is used: 

Value “b”: 

ED0D58FF861A1FC75A0829BEA5F1392D2B13AB2B05CBCD6ED

1E71AAAD761E856 

The server computes the server key “B” as follows: 

k = SHA256(N, g) 

B = (kv + g^b) % N 

In this example, the server key “B” is computed as follows: 

Value “k”: 

890D0AC9E42A7F909D3CAA9A0FF115C52A1DC8DED10839EF9

583C4E35EA76E78 

Server key “B: 



 

 71 VSF TR-06-2 
 

 

85CAE0C578E6927B78BEB173FB0F9BFC8ECB4C13542BB8BE3

B0F3447B3764A234177E22D180DCAD21F33302248B7452916

DC58ABD309C8A77440A228B8516A4E 

The server key “B” is sent to the client using the Server Key Request Packet from 

section D.3.4.5.  Upon receiving this value, the client performs the following computations: 

x = SHA256(s, SHA256(I, “:”, P)) 

k = SHA256(N, g) 

u = SHA256(A, B) 

S = ((B – kg^x) ^ (a +ux)) % N 

K = SHA256(S) 

M1 = SHA256(SHA256(N) xor SHA256(g), SHA256(I, s, A, B, K)) 

The values “x” and “k” for this example have already been computed and their values can be 

found above.  The remaining values are: 

Value “u”: 

47BFBFEC70D89D5D9D61D52F9F446225A12C5DD7E3F55257C

88772B0AEBB532A 

Value “S”: 

11426AB55E6550013743D08EB70D82F91404AA90CF0C63D8C

1687414C2F8DC9240795EEE40BAC37C5F29B07BBAEB2C0D6C

F59CFADCBACD4D93F948FB62A0C96D 

Session key “K”: 

771A81C5888B81BA1BE71C8250EC1CC2A3BA67555364F4603

260BE65099C5B97 

Validator value “M1”: 

EBFC2D79BEB3CBF7BA83C27E2B51524F8CD3F3B2C4804815A

D2516D465DF80C9 

The client caches the session “K” for possible future use as a passphrase and returns the validator 

value “M1” back to the server using the Client Validator Response Packet from section D.3.4.6. 

Upon receiving the “M1” value from the client, the server computes its own version of “K” and 

“M1” using the following formulas: 

u = SHA256(A, B) 

S = ((Av^u) ^ b) % N 

K = SHA256(S) 

M1 = SHA256(SHA256(N) xor SHA256(g), SHA256(I, s, A, B, K)) 



 

 72 VSF TR-06-2 
 

 

If the “M1” value computed by the server matches what it received from the client, the client is 

deemed authenticated.  In this case, the session key “K” will also match.  The server computes its 

validator value “M2” as follows: 

M2 = SHA256(A, M1, K) 

For this example, the value is: 

Validator value “M2”: 

FB14D73B5ACBBA101E5A799F80EBCBB43D83890E23DED9791

10EEFF109C0441A 

The server sends the validator value “M2” to the client using the Server Validator Request 

Packet from section D.3.4.7.  The client computes “M2” using the same formula as the server, 

and, if the values match, the server is deemed validated from the client. 

 


