

Video/Image Compression Technologies

An Overview

Ahmad Ansari, Ph.D., Principal Member of Technical Staff SBC Technology Resources, Inc. 9505 Arboretum Blvd. Austin, TX 78759 (512) 372 - 5653 aansari@tri.sbc.com

Video Compression, An Overview

Introduction

- Impact of Digitization, Sampling and Quantization on Compression
- Lossless Compression
 - Bit Plane Coding
 - Predictive Coding
- Lossy Compression
 - Transform Coding (MPEG-X)
 - Vector Quantization (VQ)
 - Subband Coding (Wavelets)
 - Fractals
 - Model-Based Coding

Digitization Impact

- Generating Large number of bits; impacts storage and transmission
 - » Image/video is correlated
 - » Human Visual System has limitations

Types of Redundancies

- Spatial Correlation between neighboring pixel values
- Spectral Correlation between different color planes or spectral bands
- Temporal Correlation between different frames in a video sequence

Know Facts

- Sampling
 - » Higher sampling rate results in higher pixel-to-pixel correlation
- Quantization
 - » Increasing the number of quantization levels reduces pixel-to-pixel correlation

Lossless Compression

Lossless Compression

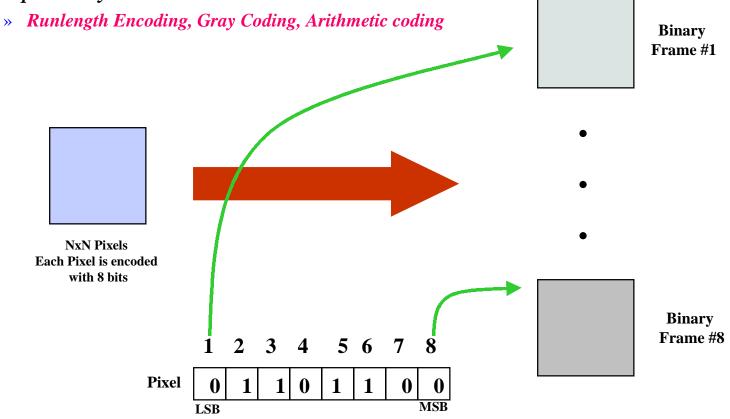
Lossless

- Numerically identical to the original content on a pixel-by-pixel basis
- Motion Compensation is not used

Applications

- Medical Imaging
- Contribution video applications

Techniques


- Bit Plane Coding
- Lossless Predictive Coding
 - » DPCM, Huffman Coding of Differential Frames, Arithmetic Coding of Differential Frames

Bit Plane Coding

- A video frame with NxN pixels and each pixel is encoded by "K" bits
- Converts this frame into K x (NxN) binary frames and encode each binary frame independently.

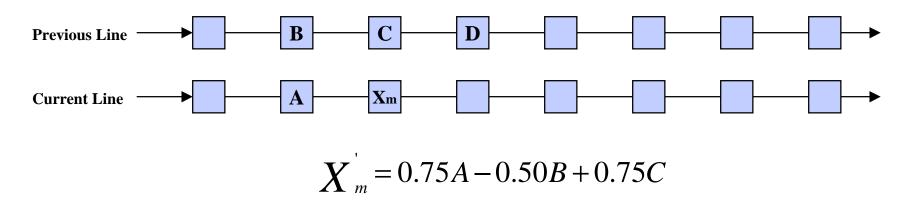
Lossless Compression

- Lossless Predictive Coding
 - DPCM: The goal is to find:

 X_m an estimate of X_m that maximizes the following propability:

$$p(X_m | X_{m-1}, ..., X_0)$$

- The difference between the actual pixel value, and its most likely prediction is called the differential or the error signal:


$$e_m = X_m - X_m$$

- The value of this error signal is usually entropy coded.

Lossless Compression

Lossless Predictive Coding

The number of pixels used in the predictor, m, is called the predictor order and has a direct impact on the predictor's performance

- Global Prediction: Same predictor coefficients for all frames
- Local Prediction: Coefficients vary from frame to frame
- Adaptive Prediction: Coefficients vary within each frames

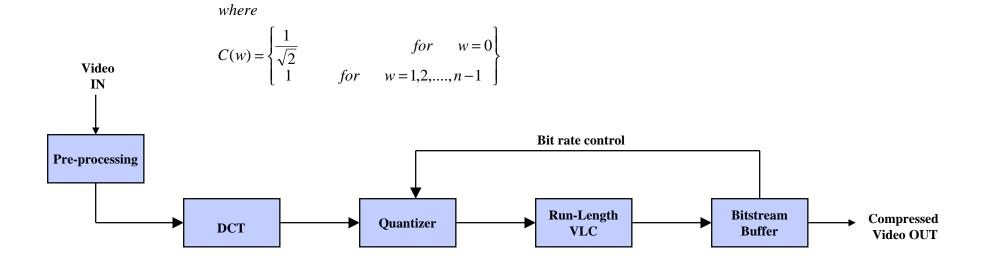
Lossy Compression

Transform Coding

- Desirable characteristics:
 - » Content decorrelation: packing the most amount of energy in the fewest number of coefficients
 - » Content-Independent basis functions
 - » Fast implementation

- Available transformations:

- » Karhunen-Loeve Transform (KLT)
 - Basis functions are content-dependent
 - Computationally complex
- » Discrete Fourier Transform (DFT/FFT)
 - Real and Imaginary components (Amplitude and Phase)
 - Fast Algorithms
- » Discrete Cosine Transform (DCT)
 - Real transformation
 - Fast algorithm
 - Best energy packing property
- » Walsh-Hadamard Transform (WHT)
 - Poor energy packing property
 - Simple hardware implementation, low-cost and fast



Transform Coding

– *DCT*

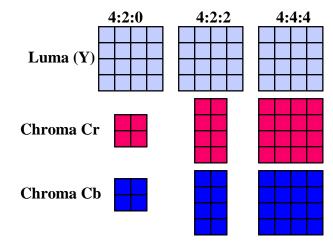
$$F(u,v) = \frac{4C(u)C(v)}{n^2} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} f(j,k) \cos\left[\frac{(2j+1)u\pi}{2n}\right] \cos\left[\frac{(2k+1)v\pi}{2n}\right]$$

$$f(j,k) = \sum_{u=0}^{n-1} \sum_{v=0}^{n-1} C(u)C(v)F(u,v)\cos\left[\frac{(2j+1)u\pi}{2n}\right]\cos\left[\frac{(2k+1)v\pi}{2n}\right]$$

Transform Coding - DCT

- JPEG/MPEG (ISO/IEC) as well as ITU H.26x standards are based on DCT
- MPEG-1 was Finalized in 1991
 - » Video Resolution: 352 x 240 (NTSC) 352 x 288 (PAL)
 - » 30 Frames/second Optimized for 1.5 Mbps
 - » Supports higher bit rate and up to 4095 x 4095 resolutions
 - » Progressive frames only

- MPEG-2 Finalized in 1994


- » Field-interlaced video
- » Levels and profiles
 - Profiles: Define bit stream scalability and color space resolutions
 - Levels: Define image resolutions and maximum bit-rate per profile

Transform Coding - MPEG-2

- Chrominance Subsampling and video formats

» Most of the information is in the Y plane

Format	Y samples per Line	Y lines per frame	C samples per line	C Lines per frame	Horizontal Subsampling Factor	Vertical Subsampling Factor
4:4:4	720	480	720	480	None	None
4:2:2	720	480	360	480	2x1	None
4:2:0	720	480	360	240	2x1	2x1
4:1:1	720	480	180	480	4x1	None
4:1:0	720	480	180	120	4x1	4x1

Transform Coding - MPEG-2

- Profiles and Levels

	Profiles									
		Simple (SP	MAIN	4:2:2	SNR	Spatial	High			
	High		4:2:0 1920 x 1152 90 Mbps 60 fps				4:2:0 or 4:2:2 1920 x 1152 100 Mbps 60 fps			
Levels	High 1440		4:2:0 1440 x 1152 60 fps			4:2:0 1440 x 1152 60 Mbps 60 fps	4:2:0 or 4:2:2 1440 x 1152 80 Mbps 60fps			
	MAIN	4:2:0 720 x 576 15 Mbps No Bs	4:2:0 720 x 576 15 Mbps 30 fps	4:2:2 720 x 576 50 Mbps 30 fps	4:2:0 15 Mbps 720 x 576		4:2:0 or 4:2:2 720 x 576 20 Mbps			
	Low		4:2:0 352 x 288 4Mbps		4:2:0 352 x 288 15 Mbps					

Transform Coding - MPEG-2

- MPEG-2 Picture Types
 - » I frame: an Intra-coded picture that is encoded using information from itself (JPEG-like)
 - » *P frame:* a *Predictive-coded picture which is encoded using motion compensated prediction from past reference frame or past reference field*
 - » **B** frame: a Bidirectionally predictive-coded picture which is encoded using motion compensated prediction/interpolation from a past and future reference frames
 - » GOP Structure: IBP...IB., IBBP...IBBP....
 - Delay and Quality are impacted by the GOP structure

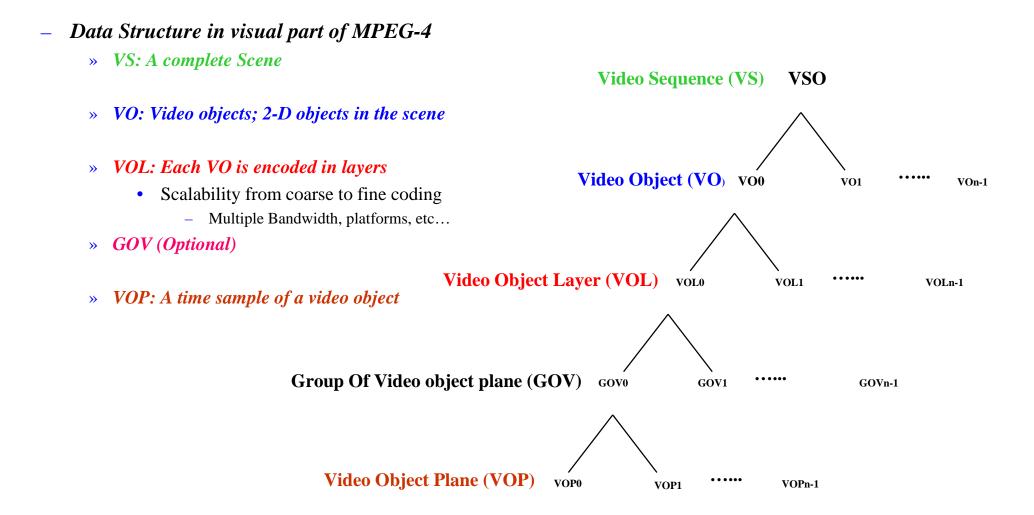
– MPEG-3

- » Originally planed for HDTV, but HDTV became an extension to MPEG-2 and MPEG-3 was abandoned
 - HDVT: 1920 x 1080 at 30 fps (1.5 Gbps)
 - 6 MHz channel bandwidth, it will only supports 19.2 Mbps (video is only around 18Mbps)

■ *MPEG-4*

- Like other MPEG standards is an ISO/IEC standard
 - » It provides technologies to view access and manipulate objects rather than pixels
 - » Provides tools for shape coding, motion estimation and compensation, and texture coding
 - » Shape encoding can be performed in binary mode or gay scale mode
 - » Motion compensation is block-based (16x16 or 8x8) with half pixel resolution, and provides a mode for overlapped motion compensation
 - » Texture encoding is done with DCT (8x8 pixel blocks) or Wavelets

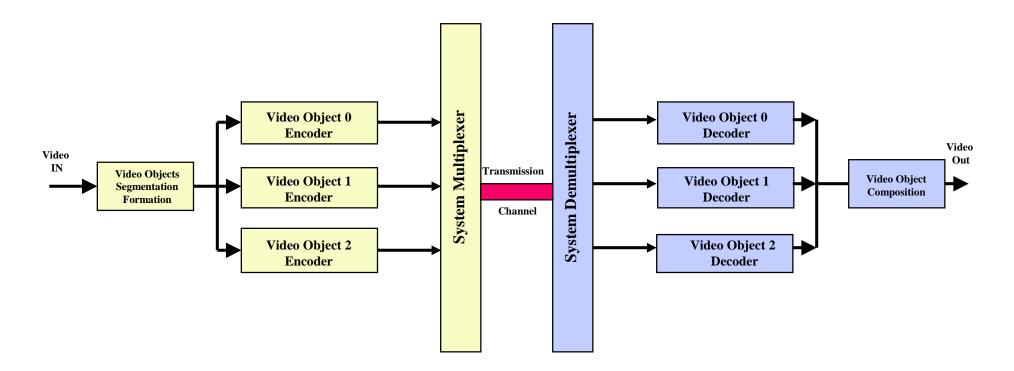
■ *MPEG-4*


- Profiles

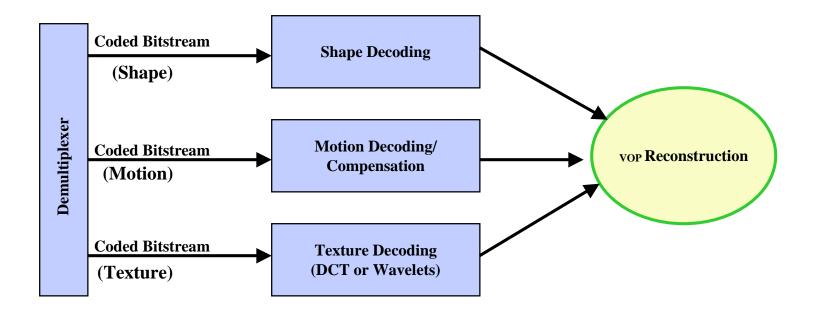
- » Simple Profile and Core Profile
 - QCIF, CIF
 - Bit rates: 64 Kbps, 128 Kbps, 384 Kbps and 2 Mbps

» Main Profile

- CIF, ITU-R 601 and HD
- Bit rate: 2 Mbps, 15 Mbps, 38.4 Mbps
- » MPEG-4 has been explicitly optimized for three bit-rate ranges:
 - Below 64 Kbps
 - 64 384 Kbps
 - 384 4 Mbps
- » Chrominance format supported is 4:2:0



■ *MPEG-4*


- General Block Diagram

■ *MPEG-4*

- Video Object Decoding

■ *MPEG-4*

- Coding Tools
 - » Shape coding: Binary or Gray Scale
 - » Motion Compensation: Similar to H.263, Overlapped mode is supported
 - » Texture Coding: Block-based DCT and Wavelets for Static Texture
- Type of Video Object Planes (VOPs)
 - » I-VOP: VOP is encoded independently of any other VOPs
 - » P-VOP: Predicted VOP using another previous VOP and motion compensation
 - » B-VOP: Bidirectional Interpolated VOP using other I-VOPs or P-VOPs
 - » Similar concept to MPEG-2

MPEG-7: Content Description

■ MPEG-7 (work started in 1998)

- A content description standard
 - » Video/images: Shape, size, texture, color, movements and positions, etc...
 - » Audio: Key, mood, tempo, changes, position in sound space, etc...

- Applications:

- » Digital Libraries
- » Multimedia Directory Services
- » Broadcast Media Selection
- » Editing, etc...

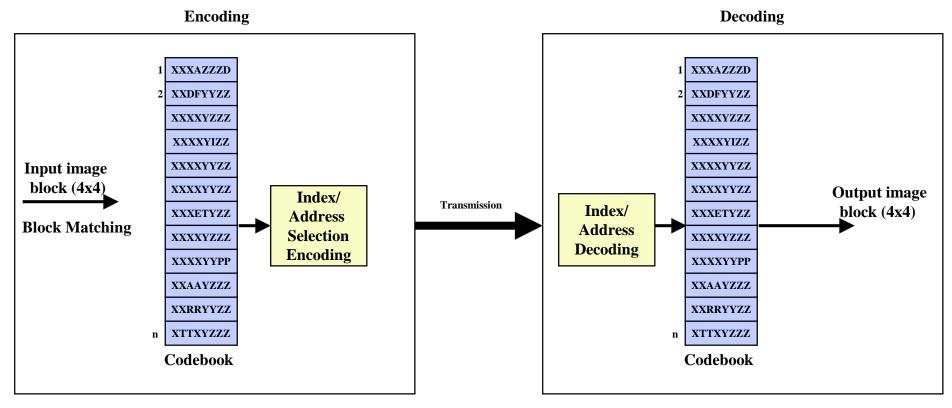
Example: Draw an object and be able to find object with similar characteristics. Play a note of music and be able to find similar type of music

■ Vector Quantization (VQ)

- Shannon's Theory
 - » Purely digital signals could be compressed by assigning shorter code-words to more probable signals and that the maximum achievable compression could be determined from a statistical description of the signal
 - » Coding vectors or groups of symbols (speech samples or pixels), rather than individual symbols or samples

• Each Image vector X is compared with a collection of codevectors $Y_{i,i=1}$, 2, 3,, n taken from a previously generated Codebook.

• The best match codevector is chosen using a minimum distortion rule:


$$d(X,Y_k) \leq d(X,Y_j)$$
 for all $j=1,2,...,n$

Where d(X,Y) denotes the distortion incurred in replacing the original X with Y. MSE is widely used because of its computational complexity.

Vector Quantization

- Each frame is divided into small blocks (4x4 pixels)
- A Codebook containing blocks of 4x4 pixels is designed using clustering techniques and training content
- The best match for each input block is found from the Codebook
- The index for the best matched block from the Codebook is transmitted

VQ Compression

Vector Quantization

- Codebook Generation
 - » Best results are obtained when the codebook is generated from the content itself (Local codebooks)
 - Computationally intensive task
 - Creates overhead codebook has to be transmitted to the receiver as overhead

» Global Codebooks

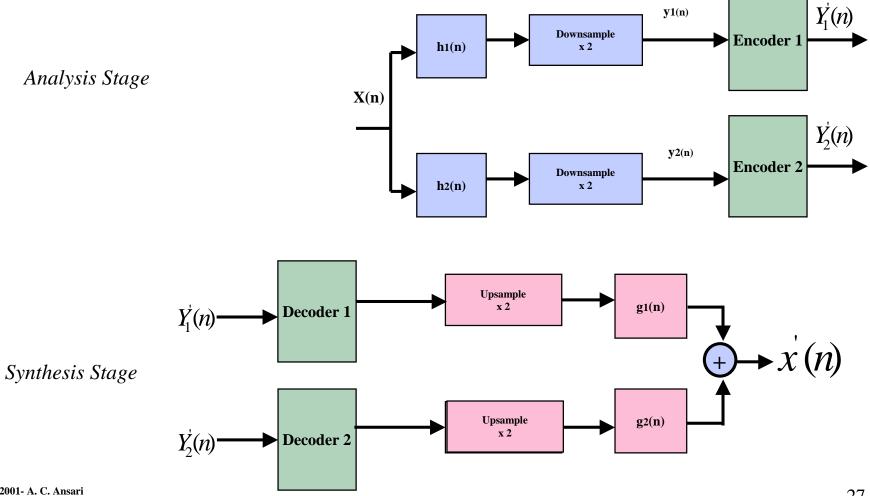
- Linde-Buzo-Gray (LBG) clustering algorithm
 - Training content from the same class of content is used
 - The larger the codebook the higher the bit rate, the higher the quality of the content

Subband Compression

Subbband Coding

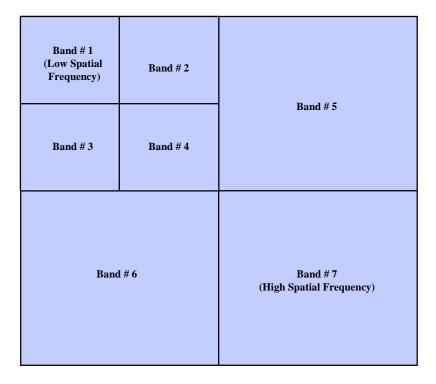
- Analysis Stage
 - » Each frame is filtered to create a set of smaller frames (subbands)
 - Each smaller frame contains a limited range of spatial frequencies
 - Since each subband has a reduced bandwidth compared to the original full-band frame, they may be downsampled.
 - » Each band is encoded separately (different bit rates, encoder, etc...)

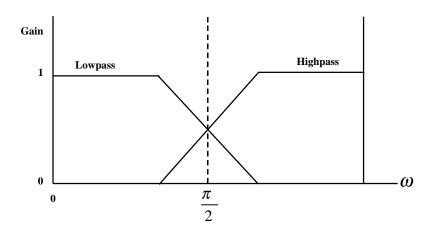
- Synthesis Stage


- » Reconstruction the original frame from its subbands
 - Each band is decoded and then upsampled
 - The appropriate filtering is applied on each subband
 - Subbands are added together to reconstruct the original fram

Subbband Coding

Example of two band decomposition _





Subband Compression

Subbband Coding

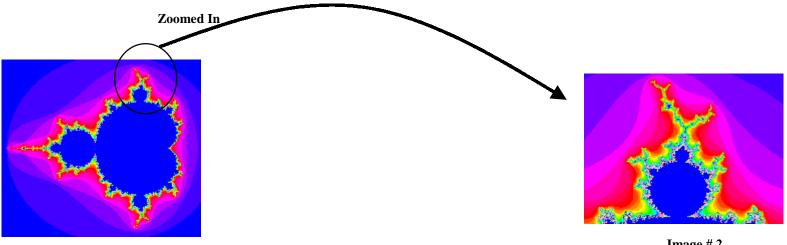
- Analysis/Synthesis Filtering
 - » Quadrature Mirror Filters (QMFs)

Subband Compression

Subbband Coding

- Key Advantage
 - » No blocking artifacts, at lower bit rates
 - » Adaptive compression techniques can be applied to each subband

- Key Disadvantage


» Difficult to perform motion compensation

Fractal Compression

Fractals

- Discovered by Benoit Madelbrot, a student of Gaston Julia (Julia Set) at Ecole _ Polytechnique de Paris
 - » Fractus in Latin, is an image that is infinitely complex and self similar at different level
 - » A fractal is usually a rough or broken geometric shape which can be subdivided into parts. Often they are either self-similar or quasi self-similar.

A fractal image from Madelbrot Set

Image # 2

Fractal Compression

Fractals

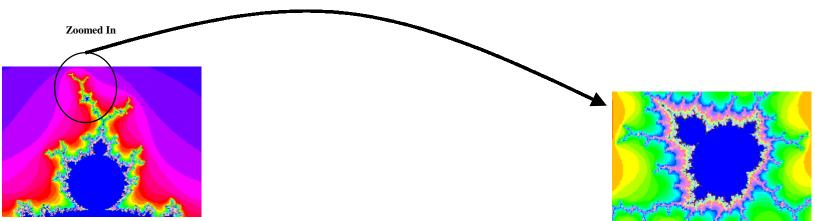


Image # 2

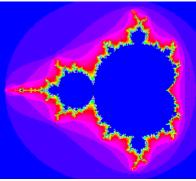
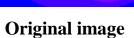



Image # 3

Image # 3 is similar to the original image with differences in color and it is rotated. This is Self similarity.

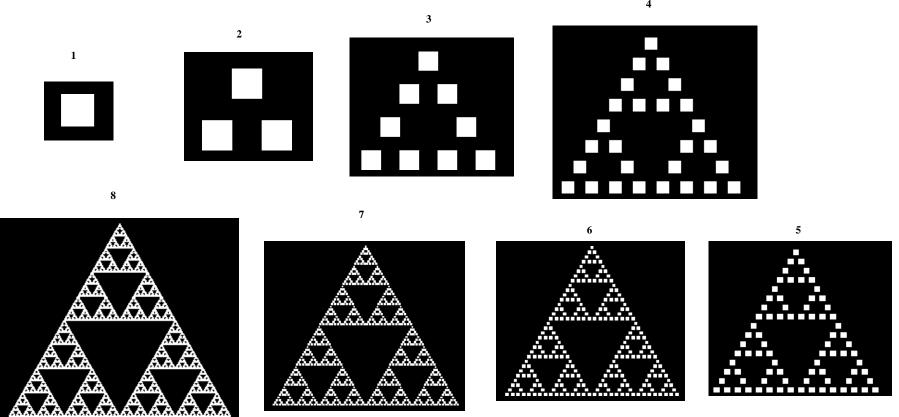
Fractals

- Image and Video Compression
 - » Only 28 numbers are needed to create the image on the right. The image can be create with infinite resolution with only 28 numbers.

0	0	0	.16	0	0	.01
.85	04	.04	.85	0	1.6	.85
.2	26	.23	.22	0	1.6	.07
15	.28	.26	.24	0	.44	.07

Fractals

- Iterated Function Systems (IFS) and Affine Transformation
 - » Rotation, Movement, Size changes, are defined by an affine transform
 - » Example of an affine transformation with 6 constant a, b, c, d, e, f: Pixel with coordinate (x,y) is transformed as follows:


$$X' = a * x + b * y + c$$

$$Y' = d * x + e * y + f$$

Fractal Compression

Fractals

- Example: Sierpinski's Triangle

Fractal Compression

Fractals

- Issues
 - » It is an inverse problem: find the affine transformation coefficients for any image; Difficult for Natural Scenes
 - » Extremely computationally Intensive
 - » Very difficult to implement in real-time

– Benefits

- » Very low bit rate compression
- » Multi-resolution and scalable compression technique

Model-Based compression

- Design models for different objects in natural scenes
- Both the encoder and the decoder have copies of the models
- Track changes (movement, size change, rotation) and send only those information to the decoder to change the models appropriately
- Difficult to find models for all natural scenes
- Computationally complex
- Look promising for head and shoulder type of applications
- Very low bit-rate can be achieved

Object-Based Compression

Object-Based compression

- Object segmentation
- Motion compensation/Object Tracking
- Texture encoding

Issues

- Computationally intensive